
 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

ICMA Centre • The University of Reading  
Whiteknights • PO Box 242 • Reading RG6 6BA  • UK 
Tel: +44 (0)1183 788239  • Fax: +44 (0)1189 314741 
Web: www.icmacentre.rdg.ac.uk 
Director: Professor John Board, Chair in Finance 
The ICMA Centre is supported by the International Capital Market Association  

Endogenizing Model Risk to Quantile Estimates

Carol Alexander
ICMA Centre, Henley Business School at Reading, UK

José María Sarabia
Department of Economics, University of Cantabria, Spain

July 9, 2010

ICMA Centre Discussion Papers in Finance DP2010-07

Copyright © 2010 Alexander and Sarabia. All rights reserved.



ABSTRACT

We quantify and endogenize the model risk associated with quantile estimates using a max-
imum entropy distribution (MED) as benchmark. Moment-based MEDs cannot have heavy
tails, however generalized beta generated distributions have attractive properties for popular
applications of quantiles. These are MEDs under three simple constraints on the parameters
that explicitly control tail weight and peakness. Model risk arises because analysts are con-
strained to use a model distribution that is not the MED. Then the model’s α quantile differs
from the α quantile of the MED so the tail probability under the MED associated with the
model’s α quantile is not α, it is a random variable, α̂. Model risk is endogenized by parame-
terizing the uncertainty about α̂, whence the quantile becomes a generated random variable.
To obtain a point model-risk-adjusted quantile, the generated distribution is used to adjust
the model’s α quantile for any systematic bias and uncertainty due to model risk. An il-
lustration based on Value-at-Risk (VaR) computes a model-risk-adjusted VaR for risk capital
reserves which encompass both portfolio and VaR model risk.
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1 Introduction

Quantile estimation has long been applied to a variety of disciplines.1 The probability

of the occurrence of extreme events is of prime interest for actuaries, where heavy-tailed

distributions are used to model large claims and losses (for instance, see Matthys et al.,

2004). Heavy-tailed distributions are frequently used for quantile estimation in hydrology

and climate change (Katz et al., 2002) and in finance, where the quantiles of loss distri-

butions are called ‘Value-at-Risk’ (VaR) assessments.2 Another area where quantile risk

assessments are frequently applied is statistical process control, for computing capability

indices (Anghel, 2001), for measuring efficiency (Wheelocker and Wilson, 2008) and for

reliability analysis (Unnikrishnan Nair and Sankaran, 2009). Several papers acknowledge

the uncertainty surrounding quantile-based risk assessments: see Mkhandi et al. (1996),

Derman (1996), Jorion (1996), Green and Figlewski (1999), Brooks and Persand (2002),

Peng and Qi (2006), Kerkhof et al. (2010) and others.

The term ‘model risk’ is frequently applied to encompass various sources of uncertainty

in statistical models, but there is no general concensus on its precise definition.3 For our

purposes, model risk stems from two sources: model choice and parameter estimation error.

These are defined as follows:

• Model choice refers to the model risk stemming from inappropriate assumptions about

the form of the statistical model for the random variable;

• Parameter estimation error refers to the model risk stemming from uncertainty in

the parameter values of the chosen model. We can never estimate parameter values

exactly because we are constrained by a finite set of observations on the variable.

This purpose of this paper is to derive an explicit distribution for the quantile, which is

generated by the uncertainty surrounding model choice and parameter estimation error,

and from which a point estimate for the model-risk-adjusted quantile may be obtained,

if desired. Our work presents a completely new research strand which fuses two original

ideas: the use of maximum entropy as a benchmark for model risk and the application of

generated distributions to model quantiles when tail probabilities are uncertain.

1A survey of their appliction to insurance, actuarial science, finance, hydrology and several other fields
is given by Reiss and Thomas (1997).

2The literature on VaR is vast: see Christoffersen (2009) for a survey.
3For instance: in insurance, though not in finance, it is common to separate model choice from parameter

uncertainty, as in Cairns (2000) for instance; and Kerkhof et al. (2010) include ‘identification risk’ which
arises when observationally indistinguishable models have different consequences for capital reserves.
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Some authors identify model risk with the departure of a model from a ‘true’ dynamic

process: see Branger and Schlag (2004) for instance. Yet, outside of an experimental or

simulation environment, we never know the ‘true’ model for sure. In practice, all we can

observe are realisations of the data generation process of a random variable. It is futile to

propose the existence of a unique and measurable ‘true’ data generation process because

such an exercise is beyond our realm of knowledge. Each analyst’s knowledge is subjective,

hence no process that encapsulates the state of knowledge of the world and which could

therefore be labelled the ‘true’ process exists.

However, an analyst is endowed with a maximum entropy distribution (MED), i.e. a

distribution based on no more and no less than the information available to him regarding

the random variable’s behaviour, including any beliefs. In short, the MED is the distribu-

tion which best represents the analyst’s state of knowledge. Under our definition, model

risk arises because this MED is not an available model. That is, the analyst is constrained

– by external regulations, internal management, computational complexity and other prac-

tical features of a large organization or system – to use a distribution that is not his MED.

Specific practical examples of these constraints will be discussed below.

In the following: Section 2 gives a formal definition of quantile model risk and outlines

a framework for its quantification; The innovative use of maximum entropy as a bench-

mark for assessing model risk is discussed in Section 3, aiming to provide advice for senior

managers, regulators, policy makers and any other parties responsible for model risk assess-

ment. We show that the popular moment-based MEDs are not appropriate if heavy tails

are included in the state of knowledge and instead we recommended the very flexible class

of generalized beta generated distributions, which are MEDs under three intuitive shape

constraints; A model for the probability α̂ that is assigned under the MED to the α quan-

tile of the model distribution is introduced in Section 4. Our idea is to endogenize model

risk by using a distribution for α̂ to generate a distribution for the quantile. The mean of

this model-risk-adjusted distribution detects any systematic bias in the model’s α quantile,

relative to the α quantile of the MED, and a suitable quantile of the model-risk-adjusted

distribution determines an uncertainty buffer which, when added to the bias-adjusted quan-

tile gives a model-risk-adjusted quantile that is no less than the α quantile of the MED at

a pre-determined confidence level; Section 5 illustrates the application of our framework to

VaR model risk, deriving a model-risk-adjusted VaR, with separate bias and uncertainty

components, that encompasses both portfolio risk and model risk; Section 6 summarizes

and concludes with recommendations for further research.
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2 Quantile Model Risk

The α quantile of the distribution F of a real-valued random variable X with range R is

denoted

qFα = F−1(α). (1)

Typically the ‘true’ distribution for X in (1) is unknown, except in simulation or exper-

imental environments. Statistical models provide an estimate F̂ of F , and to use this to

compute the α quantile. That is, instead of (1) we use qF̂α = F̂−1(α). We have argued

that a ‘true’ distribution for X, known or unknown, is beyond our realm of knowledge. We

either accept this fact or reject the concept of model risk entirely: and if we accept it, then

the benchmark for model risk assessment must be that F which embodies no more and no

less than our complete state of knowledge, i.e. the maximum entropy distribution (MED).

In our statistical framework F is identified with the unique MED based on a state of

knowledge K which contains all ‘testable information’ on F .4 Because K includes beliefs its

choice could be very subjective, particularly at the level of an individual analyst. Ideally,

a manager’s, regulator’s or other policy maker’s state of knowledge would provide the

benchmark MED against which to assess model risk on a firm-wide or industry-wide basis.

We simply characterise a model as a pair {F̂ , K̂} where F̂ is a distribution and K̂ is

a filtration which encompasses both the model choice and its parameter values. Quantile

model risk arises because {F̂ , K̂} ̸= {F,K} for two reasons. Firstly, K̂ ̸= K, e.g. K may

include the belief that only the last six months of data are relevant to the quantile today;

yet K̂ may be derived from an industry standard that must use at least one year of observed

data in K̂;5 Secondly F̂ is not, typically, the MED even based on K̂, e.g. the execution of

firm-wide models for a large institution may present such a formidable time challenge that

senior managers may require that F̂ be based on a simplified data generation processes.

Model risk may also spill over from one business line to another, e.g. normal VaR models

are often employed in large banks simply because they are consistent with the geometric

Brownian motion assumption that is commonly applied for option pricing and hedging.

In practice, the probability α is often predetermined. Frequently it will be set by senior

managers or regulators and small or large values corresponding to extreme quantiles are

very commonly used. However, in the presence of model risk the quantile of the MED

4A piece of information is testable if it can be determined whether F is consistent with it. One of piece
of information is always a normalization condition.

5As is the case under current banking regulations for the use of VaR to estimate risk capital reserves -
see Basel Committee on Banking Supervision (1996).
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corresponding to the quantile estimated by the model is not the α quantile. That is,

qF̂α ̸= qFα , and the model’s α quantile qF̂α is at a different quantile of F . We use the notation

α̂ for this quantile, i.e. qF̂α = qFα̂ , or equivalently,

α̂ = F (F̂−1(α)). (2)

If F̂ were identical to the MED there would be no model risk, and α̂ = α for every α.

In general we can quantify the extent of model risk by the deviation of α̂ from α, i.e. the

distribution of the quantile probability errors

e(α|F, F̂ ) = α̂− α. (3)

If the model suffers from a systematic, measurable bias at the α quantile then the

mean error ē(α|F, F̂ ) should be significantly different from zero. A significant and positive

(negative) mean indicates a systematic over (under) estimation of the α quantile of the

MED. Even if the model is unbiased it may still lack efficiency, i.e. the dispersion of

e(α|F, F̂ ) may be high. Several measures of dispersion may be used to quantify the efficiency

of the model. For instance, in example 2 below we report the standard deviation of the

errors, the mean absolute error (MAE), the root mean squared error (RMSE) and the

range.6

3 Selecting the Maximum Entropy Distribution

Shannon (1948) defined the entropy of a probability density function g(x), x ∈ R as

H(g) = Eg[log g(x)] = −
∫
R
g(x) log g(x)dx. (4)

The Shannon entropy (henceforth called simply entropy) is a measure of the uncertainty

in a probability distribution and its negative is a measure of information.7 The maximum

6If the model has a significant bias the MAE, RMSE and range should be applied with caution because
they include the bias. Anyway, when the bias is large it is better that the model be inefficient: the worst
possible case is an efficient but biased model.

7For instance, if g is normal with variance σ2, H(g) = 1
2 (1 + log(2π) + log(σ)), so the entropy increases

as σ increases and there is more uncertainty and less information in the distribution. As σ → 0 and the
density collapses the Dirac function at 0, there is no uncertainty but −H(g) → ∞ and there is maximum
information. However, there is no universal relationship between variance and entropy and where their
orderings differ entropy is the superior measure of information. See Ebrahimi, Maasoumi and Soofi (1999)
for further insight.
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entropy density is the function f(x) that maximizes H(g), subject to a set of conditions on

g(x) which capture the testable information that is available to the analyst. The criterion

here is to be as vague as possible (i.e. to maximize uncertainty) given the constraints

imposed by the testable information. This way, the maximum entropy distribution (MED)

represents no more (and no less) than this information. If the testable information consists

only of an historical sample on X of size n then, in addition to the normalization condition,

there are n conditions on g(x), one for each data point. In this case, the MED is just the

empirical distribution based on that sample. Otherwise, the testable information consists

of fewer conditions, which capture only that sample information which is thought to be

relevant, and any conditions imposed by the analyst’s beliefs about the shape of the MED.

Often the MED is assumed to belong to some parametric family.

An empirical MED based on historical data alone has the advantage of making no

parametric assumption, but it limits beliefs about the future to what has been experienced

in the past. Instead we advocate using the new class of generalized beta generated (GBG)

distributions introduced by Alexander and Sarabia (2010), and in particular the generalized

beta normal (GBN) distribution, for three reasons: (a) they are MEDs under three fairly

general shape constraints; (b) their shape parameters have an intuitive interpretation as

controlling the peakness, skew and tail weights of the distribution; and (c) they are flexible

enough to fit many distributional shapes. As such they may be fit to sample data, as in

example 1 below, or their parameters may be set (or modified from sample estimates) by

formulating beliefs about the shape of the distribution.

The simplest model in this class is the beta normal distribution, introduced by Eugene,

Lee and Famoye (2002). It is generated by replacing the uniform U [0, 1] distribution in the

normal probability integral transform by a beta distribution B(p, q), with density

fB(u; p, q) = B(p, q)−1[up−1(1− u)q−1], 0 < u < 1, p, q ≥ 0 (5)

where B(p, q) is the beta function. Denote the standard normal distribution and density

functions by Φ(.) and ϕ(.) respectively, and recall the probability integral transform: if

X = Φ−1(U) with U ∼ U [0, 1] then X has density function ϕ. The beta normal distribution

generalizes this, so that we sample from any beta distribution. That is, if X = Φ−1(U)

with U ∼ B(p, q) then X has a beta normal distribution with density function:

gΦ(x) = B(p, q)−1ϕ(x)[Φ(x)]p−1[1− Φ(x)]q−1,−∞ < x <∞, (6)

5



Replacing Φ(x) and ϕ(x) in (6) by any other ‘parent’ distribution F (x) and density f(x) =

F ′(x), yields the general class of beta generated distributions introduction by Jones (2004).

However, the use of a classical beta distribution in place of the uniform still limits the

behaviour of the generated random variable. For instance, the skewness and kurtosis of

beta normal random variables (tabulated by Eugene, Lee and Famoye, 2002) lie in a very

narrow range. Changing the parent distribution so that it is not normal but skewed and

leptokurtic loses the tractability of a normal parent, as well as the connection between p

and q and the skewness and tail weight of the generated distribution. For the specification

of relevant information, which is captured by the entropy constraints, these properties may

seem important to retain. So instead of changing the parent Alexander and Sarabia (2010)

change the generator, to a generalized beta distribution (of the first kind, introduced by

McDonald, 1984) which has density function

fGB(u; a, p, q) = B(p, q)−1[auap−1(1− ua)q−1], 0 < u < 1, a, p, q ≥ 0. (7)

In general, given any continuous parent distribution F (x), x ∈ R with density f(x) =

F ′(x), X has a GBG distribution when the probability transformed variable U = F (X)

has density (7). Then the distribution of X may be characterised by its density function:

fGBG(x; a, p, q) = B(p, q)−1f(x)[aF (x)ap−1(1− F (x)a)q−1], x ∈ R. (8)

Two special cases are: the classical beta generated distributions (a = 1) and the Ku-

maraswamy generated distributions (p = 1). Alexander and Sarabia also show that a GBG

is the MED under the following three contraints:

−EGBG[logF (X)a] = ζ(p, q), (9)

−EGBG[1− logF (X)a] = ζ(q, p), (10)

EGBG[log f(X)]− EU [log f(F
−1(U1/a))] = a−1(a− 1)2ζ(p, q) (11)

with U ∼ B(p, q) and ζ(p, q) = ψ(p+q)−ψ(p) where ψ denotes the digamma function. Fur-

thermore, the GBG has the maximum entropy of all distributions satisfying the information

constraints (9) – (11) and its entropy is:

−EGBG[log fGBG(x)] = logB(p, q)− log a+ a−1(a− 1)ζ(p, q)

+(p− 1)ζ(p, q) + (q − 1)ζ(q, p)− EU [log f(F
−1(U1/a))]. (12)
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It follows that the GBG entropy is the sum of the entropy of the generalized beta generator,

which is independent of the parent, and another term −EU [log f(F
−1(U1/a))] that is related

to the entropy of the parent. Furthermore, the constraints (9) and (10) reflect information

only about the generalized beta generator: (9) is related to the information in the left tail

and (10) is related to information in the right tail. The tail weights are symmetric if F

is symmetric and p = q, and a controls the peakness of the distribution: as it increases

so does the weight in the centre. Note that (12) takes its maximum value of zero when

a = p = q = 1; otherwise, the structure in the generator adds valuable information to the

shape of the GBG distribution.

The case of the normal generator N(µ, σ2) where X ∼ GBN (a, p, q;µ, σ2) is of particu-

lar interest. Since (X−µ)/σ ∼ GBN (a, p, q; 0, 1) the generalized beta distribution controls

the shape parameters but does not affect the location and scale parameters of X, which

are inherited from the N(µ, σ2) parent distribution. We now consider how one might spec-

ify beliefs about the weight in the centre and the tails of the MED by choosing suitable

values for the generalized beta parameters a, p and q given a normal parent. The following

example fits the GBN parameters a, p, q, µ, σ2 to two quite different samples on the S&P

500 index returns and interprets the entropy components of each sample. It suggests that

a pragmatic approach to specifying the MED would be to fit a GBN to historical data and

then adjust parameters to reflect subjective beliefs; e.g. increase q̂ and/or decrease p̂ to

increase the negative skew, and increase (decrease) â to increase (decrease) the peakness

of the density.

EXAMPLE 1: GBN maximum entropy distributions

Consider two samples of daily returns on the daily returns on the SP 500 index: Sample

1 (January 2004 - December 2006) and Sample 2 (January 2007 to December 2009). The

samples are chosen to represent two very different market regimes: in the first sample

markets were relatively stable with a low volatility; the second sample encompasses the

credit crunch and the banking crisis, when market risk factors were extremely volatile.

Table 1 reports standard sample statistics. Then µ̂ and σ̂ are set equal to the sample

mean and standard deviation and the parameters a, p and q are estimated using the method

of moments.8 The last section of the table reports the lower and upper tail components of

the generalized beta entropy, i.e. ζ(p̂, q̂) and ζ(q̂, p̂) in (9) and 10), and the term − log â+

â−1(â−1)ζ(p̂, q̂) in (12) which is zero for the classical beta generated distribution but which

8We fit the three parameters of (7) to the standardized return Z = (X −µ)/σ and afterwards translate
the standard GBN (a, p, q; 0, 1) distribution to a general GBN (a, p, q;µ, σ2) model using X = Zσ + µ.
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Table 1: S&P 500 daily returns: descriptive statistics,
GBN parameter estimates and entropy decomposition.

Sample 1 Sample 2
Jan 2004 - Dec 2006 Jan 2007 - Dec 2009

Mean 0.00034 −0.00014
Std. Dev. 0.00659 0.01885
Skewness 0.00259 0.05921

XS Kurtosis 0.25954 6.35811
â 3.02177 2.32358
p̂ 0.33261 0.44417
q̂ 1.00898 1.05067

ζ(p̂, q̂) 3.01637 2.30010
ζ(q̂, p̂) 0.43951 0.52847

− log â+ â−1(â− 1)ζ(p̂, q̂) 0.91232 0.46710

more generally controls the information in the centre of a GBG distribution.

Considering first the estimates of the parameter a, which increases with the weight in

the centre of the GBN distribution, it is greater for sample 1 than it is for sample 2. By

the same token, the last row of the table indicates that there is more information in the

centre of sample 1 than there is in sample 2. Since both samples have positive skewness,

p̂ < q̂ in both cases. Finally, ζ(p̂, q̂) is greater in sample 1 and ζ(q̂, p̂) is greater in sample

2, thus sample 1 has less uncertainty surrounding negative returns but more uncertainty

about positive returns, compared with sample 2.

Following the theoretical work of Shannon (1948), Zellner (1977), Jaynes (1983) and others,

an analyst may be tempted to assume the testable information is given by a set of moment

functions derived from a sample, in addition to the normalization condition. If only the

first two moments are deemed relevant, the MED is a normal distribution (Shannon, 1948).

More generally, when the testable information contains the first n sample moments, f(x)

takes an exponential form. This is found by maximizing (4) subject to the conditions:

µn =
∫
R
xng(x)dx, n = 0, . . . , N

where µ0 = 1 and µn (n = 1, ..., N) are the moments of the distribution. The solution is:
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f(x) = exp

(
−

n=N∑
n=0

λnx
n

)
(13)

where the parameters λ0, . . . λn are obtained by solving the system of non-linear equations:

µn =
∫
xn exp

(
−

n=N∑
n=0

λnx
n

)
dx, n = 0, . . . , N. (14)

Rockinger and Jondeau (2002), Wu (2003) several others have applied the four-moment

MED to econometric and risk management problems. Park and Bera (2009) and Chan

(2009a) apply the four-moment MED to the generalized autoregressive conditional het-

eroscedasticity (GARCH) model of Bollerslev (1987). Chan (2009b) extends this to the

computation of VaR. But, perhaps surprizingly, none of these papers consider the tail

weight that is implicit in the use of a four-moment MED.

Our next empirical example quantifies the model risk of two popular VaR models rela-

tive to a four-moment MED.9 We have selected these VaR models because they are com-

monly adopted, having been popularized by the ‘RiskMetrics’ methodology introduced by

JP Morgan in the mid-1990’s – see RiskMetrics (1997).

EXAMPLE 2: VaR model risk relative to a four-moment MED

We consider a portfolio tracking the S&P 500 index and a risk manager with the (ostensibly

sensible) belief that all information relevant to the VaR assessment over a 1-week horizon is

contained in the first four moments of the weekly portfolio returns over the past year. We

shall quantify the model risk of a VaR model, relative to this four-moment MED, by mea-

suring the error (3) over a long period of time. To this end we base all parameter estimates

on a one-year rolling window of weekly returns: starting with January - December 2001,

the sample is rolled over weekly until we reach the last sample from January - December

2009. In total there are 520 − 52 + 1 = 469 different rolling windows of 52 observations

where the window at time t contains the weekly returns xt−1, . . . , xt−52.

The two VaR models are based on an assumed zero-mean normal distribution for the

portfolio returns, so the α% VaR estimate at time t is Φ−1(α)σ̂t where σ̂t is the standard

deviation of the portfolio returns and Φ is the standard normal distribution function. In

9The α% VaR of a portfolio is the loss that would be equalled or exceeded with probability α, assuming
the portfolio is left unmanaged over a predetermined risk horizon. When VaR is expressed as a percentage
of the current portfolio value, it is −1 times the α quantile of the distribution of the portfolio return over
the risk horizon.

9



VaR model 1, the ‘Regulatory’ model,10 σ̂t is the square root of the arithmetic average of

x2t−1, . . . , x
2
t−52. We denote the normal distributions thus generated by F̂1t. In VaR model

2 the variance is assumed to follow an exponentially weighted moving average (EWMA)

process given by the recursion:

σ̂2
t = (η − 1)x2t−1 + ησ̂2

t−1, (15)

for some 0 < η < 1. Following RiskMetrics (1997) we set η = 0.97 and the normal

distributions generated by VaR model 2 are denoted F̂2t. It is commonly held that model

2 has less model risk than model 1, because its standard deviation is more responsive to

current market conditions. For each model we estimate time series of 1% and 5% VaR over

a 1-week horizon at each time t, i.e. −F̂−1
1t (0.05), −F−1

1t (0.01), −F̂−1
2t (0.05) and −F̂−1

2t (0.01).

These time series are depicted in Figure 1.

Now consider the maximum entropy density (13) with N = 4. This is fit to each

sample by computing the first four moments µ1, . . . , µ4 of xt−1, . . . , xt−52 and solving (14).11

The estimates of λ0, . . . , λ4 at time t, denoted λ̂t, are displayed in Figure 2.12 Denoting

by F (x; λ̂t) the MED with parameters λ̂t, for each model (i = 1, 2) we compute α̂t =

F (F̂−1
it (α); λ̂t), the tail probability under the MED associated with the α quantile estimate

from model F̂it. Thus we obtain four time series of tail probabilities α̂ under the fitted

four-moment MED corresponding to each of the two VaR models for α = 1% and 5%.

Table 2 reports some sample statistics on the quantile probability errors (3). Model 2

errors have the smaller standard deviation and range, indicating less uncertainty due to

model risk than model 1, yet model 2 has the greater bias. In each case the mean is very

significantly different from zero, and negative, indicating a substantial overestimation of

the MED VaR at both quantiles in each model. In fact, the Max statistics show that all

the quantile errors in each sample are negative, so there is not even one time t when the

probability associated with either VaR estimate under the four-moment MED is greater

than 1% or 5% respectively. This is because the belief that returns are light tailed is im-

plicit in the four-moment MED assumption, yet the samples have heavy-tailed distributions.

10So called because it employs the minimum one-year data period that is required under the Basel
Committee recommendations.

11We have used an adapted version of the Matlab code for the Zellner and Highfield (1988) algorithm,
given by Mohammad-Djafari (2001).

12For brevity we do not report the time series of sample moments. We simply remark that the samples
have positive excess kurtosis, indicating empricial distributions that are heavry tailed.
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Table 2: Sample statistics on (3) from a four-moment MED

VaR Model Model 1 Model 2

Quantile 5% 1% 5% 1%

Mean -3.03% -0.78% -3.20% -0.82%
Std. Dev. 0.99% 0.17% 0.74% 0.15%
MAE 3.03% 0.78% 3.20% 0.82%
RMSE 3.19% 0.80% 3.28% 0.83%
Max -0.15% -0.29% -1.31% -0.33%
Min -4.83% -1.00% -4.66% -0.99%
Range 4.68% 0.71% 3.34% 0.66%

The above example has demonstrated how to quantify the model risk of two popular VaR

models relative to a four-moment MED and has illustrated the undesirable effects of using

moment-based MEDs for model risk assessment of heavy-tailed random variables. In fact:

• Moment-based MEDs are only well-defined when n is even. For any odd value of n

there will be an increasing probability weight in one of the tails.

• The four-moment MED has lighter tails than a normal distribution, due to the pres-

ence of the term exp[−λ4x4] with non-zero λ4 in f(x). Indeed, the more moments

included in the conditions, the thinner the tail of the MED.

4 Endogenizing Model Risk

The previous example generated a time series of of observations on α̂ = F (F̂−1(α)) where

uncertainty about the value of α̂ was generated by model risk. We now formalize this by

regarding α̂ as a random variable with a distribution that is generated by our two sources of

model risk, i.e. model choice and parameter estimation error. Because α̂ is a probability it

has range [0, 1]; so we may approximate its distribution by a generalized beta distribution

with density (7). Assuming α̂ ∼ GB(a, p, q), the α quantile of our model, adjusted for

model risk, becomes a random variable:

Q(α|F, F̂ ) = F−1(α̂), α̂ ∼ GB(a, p, q). (16)

That is, the model-risk-adjusted quantile Q(α|F, F̂ ) is a random variable whose GBG

distribution is generated from the MED F and the parameters of the generalized beta

representation of α̂. Our quantile qF̂α (= qFα̂ ) is an observation on this random variable.

11



If GB denotes the distribution of GB(a, p, q), the distribution function of Q(α|F, F̂ ) is

GF (v; a, p, q) = Pr(F−1(α̂) ≤ v) = GB(F (v); a, p, q), v ∈ R, (17)

and, denoting by f the density of F , the density of Q(α|F, F̂ ) is

gF (v; a, p, q) = B(p, q)−1f(v)F (v)ap−1[1− F (v)a]q−1, v ∈ R. (18)

We are interested in the mean of Q(α|F, F̂ ), given by

E[Q(α|F, F̂ )] = B(p, q)−1
∫
R
vf(v)F (v)ap−1[1− F (v)a]q−1dv, (19)

because it quantifies any systematic bias in the quantile estimates: e.g. if the MED has

a heavier tails than the model then extreme quantiles qF̂α will be biased: if α is near zero

E[Q(α|F, F̂ )] > qFα and if α is near one E[Q(α|F, F̂ )] < qFα . This bias can be removed

by adding the difference qFα − E[Q(α|F, F̂ )] to the model’s α quantile qF̂α so that the bias-

adjusted quantile has expectation qFα .

Unfortunately, analytic solutions for (19) are only available for some particular choices

of F and some values of a, p and q. However, it is always possible to obtain an approximate

expression for (19). We write, E[Q(α|F, F̂ )] = EGB(a,p,q)[F
−1(α̂)]. Upon expanding F−1(α̂)

in a Taylor series around the point α̂m = E(α̂), we obtain the following a series expansion

for F−1(α̂) in terms of its derivatives F−1(i), for i = 1, . . . , 4:

F−1(α̂) = F−1(α̂m) + F−1(1)(α̂m)(α̂− α̂m) +
1

2
F−1(2)(α̂m)(α̂− α̂m)

2

+
1

6
F−1(3)(α̂m)(α̂− α̂m)

3 +
1

24
F−1(4)(α̂m)(α̂− α̂m)

4. (20)

Taking expectations in (20) yields

−E[Q(α|F, F̂ )] ≈ F−1(α̂m) +
1

2
F−1(2)(α̂m)σ

2
α̂

+
1

6
F−1(3)(α̂m)γ1(α̂)σ

3
α̂ +

1

24
F−1(4)(α̂m)γ2(α̂)σ

4
α̂, (21)

where σ2
α̂ = E[(α̂− α̂m)

2], γ1(α̂) = σ−3
α̂ E[(α̂− α̂m)

3], and γ2(α̂) = σ−4
α̂ E[(α̂− α̂m)

4].

The bias-adjusted α quantile estimate could still be far away from the maximum entropy

α quantile: the more dispersed the distribution of Q(α|F, F̂ ), the greater the potential for

qF̂α to deviate from qFα . Because risk estimates are typically constructed to be conservative,
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we add an uncertainty buffer to the bias-adjusted α quantile in order to be (1 − y)%

confident that the model-risk-adjusted α quantile is no less than qFα . That is, we add to

the bias-adjusted α quantile estimate a quantity equal to the difference between the mean

of Q(α|F, F̂ ) and G−1
F (y), the y% quantile of Q(α|F, F̂ ). Finally, our point estimate for the

model-risk-adjusted α quantile becomes:

qF̂α +

bias adjustment︷ ︸︸ ︷
{qFα − E[Q(α|F, F̂ )]}+

uncertainty buffer︷ ︸︸ ︷
{E[Q(α|F, F̂ )]−G−1

F (y)} = qF̂α + qFα −G−1
F (y). (22)

The model-risk-adjusted quantile will be greater than the unadjusted quantile when G−1
F (y)

is less than qFα ; however, negative adjustments may result from a high value for y, i.e. a low

degree of confidence for the model-risk-adjusted quantile to exceed the maximum entropy

quantile. Roughly speaking, if qF̂α overshoots qFα more than (1 − y)% of the time, the

negative bias adjustment outweighs the uncertainty buffer. Note that the computation of

E[Q(α|F, F̂ )] can be circumvented except when the decomposition into bias and uncertainty

components is required. Also, the confidence level 1 − y here reflects a penalty for model

risk which is a matter for subjective choice.

5 Application to Value-atRisk

The portfolio VaR corresponds to an amount that could be lost, with a specified probability,

if the portfolio remains unmanaged over a specified time horizon. VaR has become the

global standard for assessing risk in all types of financial firms: in fund management, where

portfolios with long-term VaR objectives are actively marketed; in the treasury divisions of

large corporations, where VaR is used to assess position risk; and in insurance companies,

who measure underwriting and asset management risks in a VaR framework. But most of

all, banking regulators remain so confident in VaR that its application to computing market

risk capital, used since the 1996 amendment to the Basel I Accord,13 will be extended to

include stressed VaR under an amended Basel II and the new Basel III Accords.14

The finance industry’s reliance on VaR has been supported by decades of academic re-

search. Especially during the last ten years there has been an explosion of articles published

on this subject. A popular topic is the introduction of new VaR models,15 and another

13See Basel Committee on Banking Supervision (1996).
14See Basel Committee on Banking Supervision (2009).
15Historical simulation (Hendricks, 1996) is the most popular approach amongst banks (Perignon and

Smith, 2010) but data-intensive and prone to pitfalls (Pritsker, 2006). Filtering the data makes it more risk
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very prolific strand of literature focuses on testing their accuracy.16 However, the stark

failure of many banks to set aside sufficient capital reserves during the banking crisis of

2008 sparked an intense debate on the risk of using of VaR models for this purpose. Turner

(2009) is critical of the manner in which VaR models have been applied and Taleb (2007)

even questions the very idea of using statistical models for risk assessment. Despite the

warnings of Turner, Taleb and other critics of VaR models,17 most financial institutions

continue to employ them as their primary tool for market risk assessment with the proviso,

following Basel II recommendations, that VaR model risk be formally considered.18

When choosing a VaR model, returns on financial assets and interest rates are commonly

assumed to have a simple parametric distribution. For instance, normal VaR models are

consistent with the assumption of geometric Brownian motion for pricing derivative prod-

ucts. Another common choice is to base VaR calculations on historical simulation, thus

making the simplistic assumption that history will repeat itself with certainty. In gen-

eral, the model risk associated with model choice arises because risk analysts are obliged,

by senior management and/or regulators, to make simpifying but pragmatic assumptions

about the behaviour of portfolio returns, and because the firm-wide use of more realistic

but complex VaR models requires computational resources that are not available. When

VaR model parameters are estimated from historical data, parameter estimation error is

a result of constraints on these data: the sampling error stemming from size limitations

imposed by internal management, regulators, or the limited data availability of new or illiq-

uid products. Moreover, the regime-switching nature of financial assets implies that much

historical data are irrelevant for the forward-looking risk horizon. Given the regulatory

requirement that banks address these common sources of VaR model risk, banks and their

regulators now require a framework that can answer the following questions:

1. Given a VaR model, are some portfolios more sensitive to its model risk than others?

sensitive (Barone-Adesi et al. (1998), Hull and White (1998a)) and this impoves its accuracy (Alexander
and Sheedy, 2008). Other popular VaR models assume normal risk factor returns with the RiskMetrics
EWMA or Regulatory covariance matrix estimates (RiskMetrics, 1997). More complex VaR models are
proposed by Hull and White (1998b), Mittnik and Paollela (2000), Christoffersen et al. (2001), Berkowitz
and O’Brien (2002), Ventner and de Jongh (2002), Angelidis et al. (2004), Hartz et al. (2006), Kuan et
al. (2009) and many others.

16This is frequently based on the coverage tests introduced by Kupiec (1998) and refined by Christoffersen
(1998), Christoffersen, Hahn and Inoue (2001) and Christoffersen and Pelletier (2004). Berkowitz and
O’Brien (2002) and Berkowitz et al. (2010) focus on the accuracy of VaR models used by major banks.

17Even the use of a quantile has been subject to criticism, as it is not necessarily sub-additive, and
related metrics such as conditional VaR may be preferred. See Beder (1995) and Artzner et al. (1999).

18See Basel Committee on Banking Supervision, 2006.
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2. Given a portfolio, which of the available VaR models has least model risk?

3. How can VaR model risk be included in risk capital requirements?

Relative to the vast literature on VaR model construction and applications there has

been little academic research on VaR model risk. Derman (1996), Simons (1997), Crouhy

et al. (1998), Green and Figlewski (1999), Kato and Yoshiba (2000) and Rebonato (2001)

examine the general causes of model risk in finance but in these papers a formal definition

of model risk that allows its assessment is elusive. The quantification of model risk in the

risk-neutral measure has been addressed by Hull and Suo (2002), who define model risk rel-

ative to the price distribution implied by market prices of vanilla options, and Cont (2006)

who quantifies the model risk of a contingent claim by the range of prices obtained under

all possible valuation models. Few papers deal explicitly with VaR model risk, notable

exceptions being Jorion (1996) and Talay and Zheng (2002), who examine parameter error,

and Brooks and Persand (2002) who empirically assess the VaR estimates obtained from

different VaR models. Yet the only paper that attempts to address the questions posed

above is Kerkhof et al. (2010), who derive a model risk ‘add on’ for capital reserves com-

puted as the adjustment necessary for two simple econometric models to pass regulatory

backtests. We remark that this approach has virtually nothing in common with ours.

We now illustrate how the concepts introduced in Section 4 may be used to provide answers

to the questions posed above, by means of an experiment in which a portfolio’s returns are

simulated based on a known data generation process. The advantage of this experiment is

that we can control the degree of VaR model risk relative to the MED, but our method for

estimating model-risk-adjusted risk capital estimates would apply equally well in practice,

when MEDs are derived from informational constraints. Our purpose is to illustrate and

empirically validate the bias and inefficiency adjustments to VaR for computing risk capital

that includes both portfolio and model risk components.

It is widely accepted that of all the parsimonious discrete-time variance processes the

asymmetric GARCH class provide the best fit to asset returns. Thus we shall assume that

our MED for the returns Xt at time t is N (0, σ2
t ), where σ

2
t follows an asymmetric GARCH

process. First the return xt from time t to t+ 1 and its variance σ2
t are simulated using:

σ2
t = ω + α(xt−1 − λ)2 + βσ2

t−1, xt|It ∼ N (0, σ2
t ), (23)
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where ω > 0, α, β ≥ 0, α+ β ≤ 1 and It = (xt−1, xt−2, . . .).
19 For the simulated returns the

parameters of (23) are assumed to be:

ω = 1.5× 10−6, α = 0.04, λ = 0.005, β = 0.95, (24)

and so the steady-state annualized volatility of the portfolio return is 25%.20 Then the

MED at time t is Ft = F (Xt|Kt), i.e. the conditional distribution of the return Xt given

the state of knowledge Kt, which comprises the observed returns It and the knowledge that

Xt|It ∼ N (0, σ2
t ).

At time t, a VaR model provides a forecast F̂t = F̂ (Xt|K̂t) where K̂ comprises It and the

model Xt|It ∼ N (0, σ̂2
t ). We now consider three analysts employing difference processes for

σ̂2
t . The first analyst has the correct choice of model but uses incorrect parameter values:

instead of (24) he employs the fitted model:

σ̂2
t = ω̂ + α̂(xt−1 − λ̂)2 + β̂σ̂2

t−1, (25)

with

ω̂ = 2× 10−6, α̂ = 0.0515, λ̂ = 0.01, β̂ = 0.92. (26)

His steady-state volatility estimate is therefore correct, but since α̂ > α and β̂ < β his

volatility process is more ‘jumpy’ than the simulated variance generation process. In other

words, compared with σt, σ̂t has a greater reaction but less persistence to innovations in

the returns, and especially to negative returns since λ̂ > λ.

The second analyst uses a simplified version of (23) with:

ω̂ = λ̂ = 0, α̂ = 0.06, β̂ = 0.94. (27)

That is, the analyst employs the RiskMetrics EWMA estimator of example 2 with η = 0.94

in (15), under which a steady-state volatility is not defined. The third analyst uses the

RiskMetrics ‘Regulatory’ estimator, also described in example 2, therefore taking:

19We employ the standard notation α for the GARCH return parameter here; this should not be confused
with the notation α for the quantile of the returns distribution, which is also standard notation in the VaR
model literature.

20The steady-state variance is σ̄2 = (ω + αλ2)/(1 − α − β) and for the annualization we have assumed
returns are daily, and that there are 250 business days per year.
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α̂ = λ̂ = β̂ = 0, ω̂ =

√√√√ 1

250

250∑
i=1

x2t−i. (28)

A time series of 10,000 returns {xt}10,000t=1 is simulated from the ‘true’ model (23) with pa-

rameters (24). Then, for each of the three models defined above we use this time series

to (a) estimate the daily VaR using Φ−1(α)σ̂t, and (b) compute the probability α̂t associ-

ated with this quantile under the simulated returns distribution Ft = F (Xt|Kt). Because

Φ−1(α̂t)σt = Φ−1(α)σ̂t, this is given by

α̂t = Φ

[
Φ−1(α)

σ̂t
σt

]
. (29)

Taking α = 1% for illustration, the empirical densities of the three VaR estimates are

depicted in Figure 4. The AGARCH VaR is less variable than the EWMA VaR, and the

Regulatory VaR has a multi-modal distribution, a feature that results from the lack of

risk-sensitivity of this model.21 Now, for each VaR model and for each α we shall use (7)

to obtain the density of Q(α|F, F̂ ). But to apply this we first need a density to represent

the empirical distribution of α̂, given F . Thus for each VaR model we estimate α̂ at every

time point in the simulations and then fit a generalized beta distribution to these values.

For α = 0.1%, 1% and 5%, Table 3, reports the mean and standard deviation of α̂, and

we quantify model risk using the RMSE between α̂ and α. The closer α̂ is to α, the smaller

the RMSE and the less model risk there is in the VaR model. The Regulatory model yields

an α̂ with the highest RMSE, for every α, so this has the greatest degree of model risk.

And the AGARCH model, which we already know has the least model risk of the three,

produces a distribution for α̂ that has mean closest to the true α and smallest RMSE.

These observations are supported by Figure 5, which depicts the empirical distribution of

α̂ for α = 1%.

For simplicity, we shall set the generalized beta parameter a = 1 and fit α̂ with a

classical beta distribution. Table 4 reports the method of moment estimates (p̂, q̂) that

are computed using the means and standard deviations given in Table 3, and Figure 3

depicts the beta distributions corresponding to these values of (p̂, q̂). Since p̂ >> q̂ all beta

distributions have a large positive skew. Both p̂ and q̂ are inversely proportional to α, and

to the degree of model risk. Thus, at one extreme we have the highly-peaked beta density

21Specifically, a single extreme negative return makes the VaR jump to a level which is sustained for
exactly 250 days, and then the VaR jumps down again when this return drops out of the in-sample period.
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Table 3: Sample statistics for quantile probabilities

AGARCH EWMA Regulatory

0.10% Mean 0.11% 0.16% 0.23%
Stdev 0.0007 0.0013 0.0035
RMSE 0.07% 0.14% 0.37%

1% Mean 1.03% 1.25% 1.34%
Stdev 0.0042 0.0059 0.0119
RMSE 0.42% 0.64% 1.22%

5% Mean 4.97% 5.44% 5.27%
Stdev 0.0103 0.0123 0.0268
RMSE 1.03% 1.31% 2.66%

of the AGARCH model when α = 5%, and at the other we have the ‘U’-shaped density of

the Regulatory model when α = 0.1%.

Table 4: Values of (p̂, q̂) for the distributions given in Table 3.

α AGARCH EWMA Regulatory
0.10% p̂ 2.35 1.50 0.43

q̂ 2145.39 959.21 188.35
1% p̂ 5.92 4.43 1.24

q̂ 570.98 350.90 91.04
5% p̂ 22.10 18.29 3.61

q̂ 422.04 318.15 64.78

We now apply (22) to compute a point estimate for model-risk-adjusted VaR (RaVaR,

for short). The maximum entropy VaR (MeVaR, for short) which is based on the simulated

process and the three VaR estimates are time-varying, so the RaVaR will depend on the

time it is measured. For illustration, we select a time when the simulated volatility is at

its steady-state value of 25% – so the MeVaR is is 4.886%, 3.678% and 2.601% at the

0.1%, 1% and 5% levels, respectively – but similar conclusions would be drawn at other

volatility levels. Drawing at random from the points when the simulated volatility was

25%, we obtain AGARCH, EWMA and Regulatory volatility forecasts of 27.00%, 23.94%

and 28.19% respectively.22 These volatilities determine the VaR estimates that we shall

22So the AGARCH and Regulatory models overestimated VaR at this point and the EWMA model
underestimated VaR; of course, this was not the case every time the simulated volatility was 25%.
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now adjust for model risk.

Again taking α = 1% for illustration, the simulated densities of Q(α|F, F̂ ) are depicted
in Figure 6. The empirical mean is

̂
E[Q(α|F, F̂ )] = −10−4∑10,000

i=1 F−1(α̂i). Alternatively,

we could use the beta parameter estimates in Table 4 to derive an analytic beta normal

density function. In this case the mean is computed using numerical integration of (19), or

via the analytic approximation (21).23

Table 5: Comparison of three methods for estimating the mean of Q(α|F, F̂ )

α Mean AGARCH EWMA Regulatory
0.10% (Emp.) 4.919 4.793 4.961

(19) 4.953 4.832 -
(21) 4.988 5.017 1.292

1% (Emp.) 3.703 3.608 3.735
(19) 3.722 3.603 3.729
(21) 3.710 3.614 4.067

5% (Emp.) 2.618 2.551 2.641
(19) 2.626 2.227 2.643
(21) 2.618 2.552 2.654

All three means are subject to error, albeit in slightly different ways, but the errors

are small relative to the VaR model risk. In Table 5 the three estimates are close, except

in the Regulatory model at extreme quantiles (1% and 0.1%). The approximation (21) is

good for the AGARCH model, but the fit deteriorates as the bias increases: the means for

the Regulatory model are similar at the 5% quantile, but becomes more diverse at 1% and

at the 0.1% quantile, where the Regulatory model has a value of p̂ less than 1, it becomes

impossible to integrate (19) using standard numerical methods.

Table 6 summarizes the bias, calculated as the difference between the MeVaR and the

empirical mean of Q(α|F, F̂ ).24 It reveals a general tendency for the EWMA model to

slightly underestimate VaR and the other models to slightly overestimate VaR. Yet the

bias is small, since all models assume the same normal form as the MED and the only

difference between them is their volatility forecast. Although the bias tends to increase as

23The derivatives of Φ−1(z) in (21) are not complicated: dϕ(z)/dz = −zϕ(z), Φ−1(1)(z) = ϕ(Φ−1(z))−1,

Φ−1(2)(z) = Φ−1(z)[ϕ(Φ−1(z))]−2, Φ−1(3)(z) = [1 + 2
{
Φ−1(z)

}2
][ϕ(Φ−1(z))]−3, and Φ−1(4)(z) =

Φ−1(z)[7 + 6
{
Φ−1(z)

}2
][ϕ(Φ−1(z))]−4.

24The very similar results based on other means in Table 5 are not reported for brevity.
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Table 6: Bias estimates and 5% quantiles for RaVaR computation

α AGARCH EWMA Regulatory
0.1% Bias -0.067 0.054 -0.075

Quantile 0.291 0.332 0.891
1% Bias -0.025 0.070 -0.056

Quantile 0.237 0.270 0.663
5% Bias -0.017 0.050 -0.040

Quantile 0.157 0.174 0.454

α decreases it is not significant for any model.25 Beneath the bias we report the 5% quantile

of the simulated distribution for Q(α|F, F̂ ), since we shall first compute the RaVaR so that

it is no less than the MeVaR with 95% confidence.

Following the framework introduced in the previous section we now define:

RaVaR(y) = VaR +

bias adjustment︷ ︸︸ ︷
(MeVaR− E[Q(α|F, F̂ )])+

uncertainty buffer︷ ︸︸ ︷
(E[Q(α|F, F̂ )]−G−1

F (y)) .

Table 7 sets out the RaVaR computation for y = 5%. The model’s volatility forecasts are

in the first row and the corresponding VaR estimates are in the first row of each cell, for

α is 0.1%, 1% and 5% respectively. The (small) bias is corrected by adding the bias from

Table 6 to each VaR estimate. The main source of model risk here concerns the potential

for a large (positive or negative) errors in the quantile probabilties, i.e. the dispersion of

the densities in Figure 3. To adjust for this we add to the bias-adjusted VaR an uncertainty

buffer equal to the difference between the MeVaR and the 5% quantile given in Table 6.

This gives the RaVaR estimates shown in the third row of each cell.

Since risk capital is a multiple of VaR, the percentage increase resulting from replacing

VaR by RaVaR(y) is:

% risk capital increase =
MeVaR−G−1

F (y)

VaR
. (30)

25Standard errors of Q(α|F, F̂ ) are not reported, for brevity. They range between 0.157 for the AGARCH
at 5% to 0.891 for the Regulatory model at 0.1%, and are directly proportional to the degree of model risk
just like the standard errors on the quantile probabilities given in Table 3.
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Table 7: Computation of 95% RaVaR

α AGARCH EWMA Regulatory
Volatility 27.00% 23.94% 28.19%

0.10% VaR 5.277% 4.678% 5.509%
Bias Adj. VaR 5.244% 4.772% 5.434%

RaVaR 5.716% 5.387% 6.483%
1% VaR 3.972% 3.522% 4.147%

Bias Adj. VaR 3.948% 3.592% 4.091%
RaVaR 4.303% 4.055% 4.880%

5% VaR 2.809% 2.490% 2.932%
Bias Adj. VaR 2.791% 2.540% 2.892%

RaVaR 3.043% 2.867% 3.451%

Table 8: Percentage increase in risk capital from model risk adjustment of VaR

1− y AGARCH EWMA Regulatory
95% 8.33% 15.15% 17.68%
90% 6.05% 12.62% 14.16%
85% 4.47% 10.99% 11.37%
80% 3.19% 9.57% 8.81%
75% 2.25% 8.38% 6.68%

The penalty (30) for model risk depends on α, except in the case that both the MED and

VaR model are normal, and on the confidence level (1−y)%. Table 8 reports the percentage

increase in risk capital due to model risk when RaVaR is no less than the MeVaR with

(1 − y)% confidence. This is directly proportional to the degree of model risk in the VaR

model. At 95% confidence, the first row of the table shows that risk capital based on the

AGARCH model would be increased by about 8%, by about 15% in the EWMA model and

about or 17.5% in the Regulatory model. The other rows in Table 8 shows how much extra

risk captial would be required for other reasonable confidence levels. Interestingly, since

the EWMA VaR is exceptionally low at the time of the adjustment, the EWMA VaR-based

risk capital would require a greater adjustment than the Regulatory VaR-based risk capital

if we required only 80% or lower confidence that the RaVaR will be less than the MeVaR.
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6 Summary and conclusions

We assert that it is meaningless to postulate the existence of a unique, measurable ‘true’

distribution as a benchmark for model risk because it is beyond our realm of knowledge,

except in simulation experiments. So one can either confine the concept to contolled en-

vironments or define model risk with reference to a distribution has meaning in practical

situations. We argue that there is no better choice of model risk benchmark than a maxi-

mum entropy distribution (MED) as this embodies the entirety of information and beliefs,

no more and no less. To reach an industry or firm-wide consensus for model risk assessment

requires the adoption of common MEDs for major risk factors. To this end, we provide

advice on the choice of MED. We demonstrate that moment-based MEDs make implicit

light-tailed assumptions, and we advocate using the flexible class of GBG distributions, as

these are maximum entropy under simple and intuitive shape conditions.

Model risk arises when the analyst uses a simplification in place of his MED because

he is constrained by management directives and/or the complexity of the system and the

available data. In the presence of model risk, a quantile estimate that purports to be at

some quantile of the MED is in fact at a different quantile, which has an associated tail

probability under the MED that is stochastic. Using a generalized beta distribution to

model this tail probability we obtain a model-risk-adjusted quantile that is a GBG random

variable whose distribution endogenizes the bias and uncertainty due to model risk. From

this distribution we derive a point model-risk-adjusted quantile that is no less than the

MED quantile with some pre-specified degree of confidence. This confidence level may be

firm-specific, or policy makers and regulators may consider setting industry-wide directives.

We have applied our framework, using real data and in a simulation environment, to

the problem of VaR assessment in financial risk analysis. For VaR models with controlled

degrees of model risk we have quantified the increase in risk capital when the model-

risk-adjusted VaR (RaVaR) is used in place of the standard VaR. This depends on the

confidence required for the RaVaR to be no less than the VaR based on the maximum

entropy distribution. If this confidence level is high enough that disallowed VaR models

have model-risk-adjusted VaRs that pass the regulatory backtests, the use of our framework

is likely to be considerably less expensive than investment in a new VaR system.

The use of maximum entropy as a benchmark for estimating model risk presents a new

direction for research. This paper has focussed on developing a statistical framework for

quantile risk assessments, and future research may seek to extend this to other quantile-

based metrics such as conditional VaR. Other interesting topics include the development
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of standardized MEDs for major risk factors and the backtesting of model-risk-adjusted

estimates for commonly-used models. Quantifying model risk presents a significant chal-

lenge for numerous problems in insurance, finance, hydrology and other areas. There is

considerable potential for research based on model risk assessment via maximum entropy

in all these areas, rather than on the elusive concept of a ‘true’ model.
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Figure 1: Weekly normal VaR estimates as a percentage of the S&P 500 index at the
1% quantile (solid lines) and 5% quantile (dotted lines) where standard deviation is as
described in Model 1 (black lines) and Model 2 (grey lines).

Figure 2: Parameters of the four-moment MED estimated on a rolling window of 250 weekly
returns on the S&P 500 index: λ0, λ1 and λ3 on left-hand scale; λ2 and λ4 on right-hand
scale.
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Figure 3: Plots of the beta density for the models AGARCH, EWMA and Regulatory
(Table 4) for (a) 0.10%, (b) 1% and (c) 5%.
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Figure 4: Distribution of daily 1% VaR estimates using parameters AGARCH (20), EWMA
(21) and Regulatory (22).

Figure 5: Distribution of quantile probabilities for α = 1% in Figure 4.

Figure 6: Distributions of
̂

Q(α|F, F̂ ) under the three VaR models at α = 1%.
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