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Abstract§ 

GARCH option pricing models have the advantage of a well-established econometric foundation. 

However, multiple states need to be introduced as single state GARCH and even Lévy processes are 

unable to explain the term structure of the moments of financial data. We show that the continuous time 

version of the Markov switching GARCH(1,1) process is a stochastic model where the volatility follows a 

switching process. The continuous time switching GARCH model derived in this paper, where the 

variance process jumps between two or more GARCH volatility states, is able to capture the features of 

implied volatilities in an intuitive and tractable framework.  
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I INTRODUCTION 

Multi-state GARCH models have been extensively studied in the works of Vlaar and Palm (1993), Cai 

(1994), Ding and Granger (1996), Gray (1996), Bauwens, Bos and van Dijk (1999), Bai, Russell and Tiao 

(2001, 2003), Roberts (2001), Klaassen (2002), Haas, Mittnik and Paolella (2004a, 2004b), Alexander and 

Lazar (2005b, 2006) and others. There is considerable evidence that these models offer better fit in the 

physical measure than single state GARCH processes. Also, multi-state GARCH has desirable features 

such as time variation and term structure in higher conditional moments and multiple leverage and mean-

reverting mechanisms that are not a feature of single state GARCH models. We know that these 

properties are essential for any model that pertains to be consistent with the empirical properties of higher 

moments in financial returns and the behaviour of implied volatility (see Garcia, Ghysels and Renault, 

2005). Even Lévy processes with a single state are inconsistent with the observed term structure of higher 

moments and switching models are needed to capture this behaviour, as shown by Konikov and Madan 

(2002).  

 

Intuitively, a model with multiple mean-reverting volatility states will be appropriate if different types of 

shocks induce different responses. For instance, a rumour may have an enormous effect but die out very 

quickly whereas an announcement of important changes to economic policy may have a more persistent 

shock that also raises the general level of volatility. Single state GARCH models have only one mean-

reversion mechanism and if there are in fact two types of shocks then the model cannot differentiate 

between them. If the model is estimated on high frequency data, the identified mean-reversion is likely to 

be rapid, whereas with low frequency data the model will capture the slower mean-reverting effect. There 

can also be differing degrees of leverage effect, i.e. asymmetry in the volatility response to price shocks. 

For instance, Alexander and Lazar (2005b) show that when equity markets are in a volatile regime the 

leverage effect is more pronounced. So if in fact there are regime specific leverage and mean-reversion 

effects, the coefficients in a single state GARCH process can represent only an average of these.  

 

Since multi-state GARCH models provide a closer fit to both the conditional and the unconditional 

returns densities than single state GARCH processes, it is worthwhile to examine a continuous time 

pricing model with a multiple state GARCH processes as its econometric foundation. Nelson (1990) 

proved that the continuous time limit of a single state GARCH process is a mean-reverting stochastic 

volatility model that is similar to the popular model of Heston (1993). More recently Alexander and Lazar 

(2005a) derived the limit of weak GARCH processes but no continuous limit has been derived for multi-

state GARCH processes. Switching models have been used for option pricing, but almost all models 

assume that the volatility is constant given the ruling state.  

 

This paper introduces a new model for pricing options with two or more state dependent time-varying 

volatility processes where volatility jumps up or down between these mean-reverting states. To our 
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knowledge this is the first development of a continuous time GARCH option pricing model with multiple 

mean-reversion and leverage mechanisms, and we call it the continuous Markov switching GARCH 

model. The model has a strong micro foundation because it is the continuous time analogue of the 

Markov switching (MS) GARCH process of Haas, Mittnik and Paolella (2004b), which is the most 

tractable MS GARCH model because individual variances do not depend on lagged values of other 

individual variances. As a special case we consider the normal mixture (NM) GARCH model, where the 

conditional state probabilities are state-free and thus at each point in time the selection of the state is 

random and does not depend on the previous state. We show that because of this assumption the 

continuous time limit of the NM GARCH process falls outside the class of Lévy processes. 

 

The remainder of this paper is organized as follows: Section II reviews the large research literature on 

option pricing using GARCH, other pricing models based on Markov switching and general models with 

price and volatility jumps. Section III defines the weak Markov Switching GARCH process, the weak 

formulation being necessary so that the GARCH component aggregates in time, and derives its 

continuous time limit. Section IV explores the properties of the continuous MS GARCH models by 

discussing the risk premium for state uncertainty, considers a replicating portfolio and discusses the 

model’s discretization. Section V summarizes and concludes. 

 

II LITERATURE REVIEW 

A path-breaking paper by Duan (1995) was the first to derive a discrete time GARCH option pricing 

model. The pricing is based on Monte Carlo simulations and utilizes the equivalence of the variance 

processes under the real-world and risk-neutral measures. Heston and Nandi (2000) derive a closed-form 

solution but only for a specific model. More recently Barone-Adesi, Engle and Mancini (2005) also use 

simulations for pricing but assume the variance processes and the parameters are different under the two 

measures. Siu, Tong and  Yang (2004) use conditional Esscher transforms to choose the equivalent 

martingale measure that minimises the relative entropy between the real-world and the risk-neutral 

distribution. Elliott, Siu and Chan (2006) derive a discrete time pricing model, also using Esscher 

transforms, for MS GARCH processes based on the Hamilton and Susmel (1994) parameterization.  

 

Bollen (1998) and Bollen, Gray and Whaley (2000) consider more general discrete time Markov switching 

models for option pricing, computing lattice-based European and American option prices. Later Hardy 

(2001) provided closed-form solutions for European options. Duan, Popova and Ritchken (2002) 

consider a model in which changes in the state in the Markov switching process are determined by an 

impact function for the innovations. Interestingly, the authors find that under certain assumptions, the 

limit of this model when the number of states goes to infinity is one of the asymmetric discrete time 

GARCH models. More recently Smith (2002), Hwang, Satchell and Valls Pereira (2004) and Kalimpalli 

and Susmel (2004) have all considered discrete time Markov switching in discrete time stochastic volatility 
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models. Discrete time Markov switching models do not converge as the time step decreases (Klein, 2002). 

However, they do have a continuous time counterpart: the continuous time Markov chain.1 

 

Continuous time Markov switching models for option pricing were introduced by Naik (1993), who 

derived a closed form solution for simple European calls and puts when the underlying price dynamics are 

governed by a two state process with constant drift and volatility in each state. This idea was extended to 

mean-variance hedging by Di Masi, Kabanov and Runggaldier (1994); to pricing American and exotic 

options by Guo (2001a, 2001b) and Guo and Zhang (2004); and to more than two states by Jobert and 

Rogers (2006). Elliot et al. (1995) introduced a martingale process for the evolution of the state probability 

which forms the basis of other continuous time Markov switching models for option pricing, including 

those derived by Buffington and Elliott (2002) and Yao, Zhang and Zhou (2006). Continuous time 

Markov chains have been also combined with non-normal distributions in Konikov and Madan (2002), 

Albanese, Jaimungal and Rubisov (2003) and Elliott and Osakwe (2006), who price options using a two-

state variance gamma process; Chourdakis (2000) prices simple and exotic options using a switching Lévy 

parameterization and Edwards (2005) considers a process that has different specifications (not just 

different parameters) in two different states.  

 

Option pricing models with jumps have been identified as a very useful tool to describe option price 

behaviour – see Merton (1976), Bakshi, Cao and Chen (1997), Naik and Lee (1990), Jones (2003) and 

Johannes (2004). Jumps can be present in the price and/or the volatility processes; the main difference 

between these is that price jumps have a short-term effect and reduce the level of the variance of the 

diffusion, whilst variance jumps have a longer term effect, decreasing the variability and strengthening the 

autocorrelation in the variance. Bates (2000) and Pan (2002) show that jumps in the price process alone 

are not enough to explain major crashes in financial returns and do not generate enough negative 

skewness in the return density, which necessitates the use of volatility jumps. 

 

Naik (1993) was the first to discuss deterministic jumps in the variance process; several other papers 

followed: Duffie, Pan and Singleton (2000) have considered models that have stochastic jumps in both 

processes with variance jumps being negatively correlated with price jumps. Interestingly, they obtain that 

jump times are clustered and this can be interpreted as an indication for multi-state processes. Eraker, 

Johannes and Polson (2003) show that models without volatility jumps are misspecified and cannot 

capture the correct dynamics for volatility. Later Eraker (2004) found that positive volatility jumps alone, 

whilst very important, still cannot explain the 1987 crash. He suggests the use of a more flexible model 

that allows for two-way jumps in the variance and the continuous Markov switching GARCH model 

derived in this paper does indeed display this feature. 

                                                      

1 Other continuous time models as well can be discretized using Markov chains; for instance any stochastic volatility 
model can be approximated by a continuous time Markov chain, as shown by Kushner (1990) and Chourdakis 
(2002), and this methodology can be used for pricing options as for example in Chourdakis (2004). 
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Jumps are not only used in continuous time modelling; they have also been treated in a GARCH 

framework based on a discrete time analysis. Jorion (1988) was the first to discuss ARCH models with 

jumps in the mean equation. Maheu and McCurdy (2004) and Daal and Yu (2005) extended this 

framework to GARCH models where the residual is decomposed into a normal and a jump component, 

the normal part following a GARCH process. A more interesting model is that of Duan, Ritchken and 

Sun (2005a), where the GARCH variance process characterizes not only the normal component but the 

entire residual including the jump term. In another paper, Duan, Ritchken and Sun (2005b) show that 

their model converges to a continuous-time model with jumps in both the price and variance processes, 

but with diffusion in the price process only. If restricted to a normal GARCH, their limit model gives the 

continuous time limit GARCH model derived by Corradi (2000) because they use the same limiting 

assumptions for the parameters. Finally, Klüppelberg, Lindner and Maller (2004) introduced a continuous 

time process that features the properties of GARCH where the residuals follow a Lévy process but this is 

not an exact limit of the discrete time GARCH. 

 

III WEAK MARKOV SWITCHING GARCH 

This section motivates the use of weak GARCH processes in the MS GARCH model, discusses the 

properties of the model and derives our theoretical results. All proofs are given in the appendix. 

 

III.1 Motivation for Weak GARCH Processes 

The GARCH(1,1) process, defined by Bollerslev (1986) as the generalized version of Engle’s (1982) 

ARCH model, is given by the following: 

(1) µ εt ty = +  where ( )1
1

1

ln /t t
t t t

t

S S
y S S

S
−

−
−

−
= ≅   

(2) 2
1ω αε βt t th h −= + +  

The subscript t here stands for the time that the process becomes known; this means that th is the 

conditional variance for 2
1εt+  and it is revealed at time t. The strong definition states that: 

( )1ε 0t tE I+ =  and ( )2
1εt t tE I h+ =  with { }1ε , ε ,t t tI −= …  

 

However, since this process is not aggregating in time, it is more correct to study the continuous time limit 

of the weak GARCH(1,1) process defined by Drost and Nijman (1993) that is time aggregating. Only such 

a model would ensure that a GARCH process could be defined for any time step and it will have: 

(3) 
( )
( )( )

1

2
1

ε ε 0 0 0,1, 2

ε ε 0 0 0,1, 2

r
t t i

r
t t t i

E i r

E h i r

+ −

+ −

= ≥ =

− = ≥ =
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In this model th  is not the conditional variance but the best linear predictor (BLP) of the squared 

residuals. Alexander and Lazar (2005a) prove that as the time interval between realisations decreases to 

zero the data generating process (1) – (3) will converge to a stochastic volatility model characterized by 

mean-reversion in the variance process and non-zero correlation between the variance and the returns 

processes. This is a more general model than Nelson’s (1990) limit, in which the correlation between 

returns and variance must be zero.  

 

To analyse the continuous limit of multi-state GARCH processes we need to define a weak multi-state 

GARCH(1,1) with a GARCH component that aggregates in time. It is known that Markov switching 

models do not aggregate in time, although they do have counterparts given by continuous Markov chains 

(see Cox and Miller, 1987). This lack of time aggregation means that the continuous time model derived 

here is not the exact limit of the MS GARCH process; rather, it is its continuous time counterpart. Our 

derivation is based on the Markov Switching GARCH formulation introduced by Haas, Mittnik and 

Paolella (2004b) as it is the most tractable and intuitive MS GARCH model in the extant literature.  

 

III.2 Definition and Properties of Weak MS GARCH 

The state at time t is denoted by ts  and this can take K values, i = 1,…, K. Besides (1), the model has K 

distinct GARCH processes: 

(4) 
2

, , 1ω α ε βi t i i t i i th h −= + +           i = 1,…, K 

and the strong MS GARCH process assumes:2 

( )1ε 0t tE I+ = , ( )1 1ε , µt t t iE I s i+ + = =  and ( )2 2
1 1 ,ε µ ,t i t t i tE I s i h+ +− = =  

However, the weak (i.e. time aggregating) MS GARCH process assumes:3 

(5) ( )( )1ε µ ε 0r
t i t j tE s i+ −− = =     j ≥ 0;     r = 0, 1, 2 

(6) ( )( )2 2

1 ,ε µ ε 0r
t i i t t j tE h s i+ −− − = =     j ≥ 0;     r = 0, 1, 2 

and hence: 

(7) ( )1ε ε 0r
t t jE + − =     j ≥ 0;     r = 0, 1, 2 

(8) ( )( )2

1ε ε 0r
t t t jE h+ −− =     j ≥ 0;     r = 0, 1, 2 

 

                                                      

2 Note that Haas, Mittnik and Paolella (2004b) use zero conditional means for the residuals in different regimes, 
arguing that non-zero means would contradict Timmermann (2000)’s results. Timmermann (2000) showed 
empirically that when the residuals have non-zero regime-specific means then the returns are autocorrelated. Haas et 
al. (2004b) state that due to the autocorrelation in the returns, fitting a GARCH model in this situation is not 
appropriate. However, we argue that it is only autocorrelation in the residuals, and not autocorrelation in returns, 
that would make a GARCH fit undesirable. 
3 Here hi,t no longer denotes the conditional variance, but the best linear predictor of the squared returns in state i. 
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Let tp denote the time-dependent state indicator vector, i.e.:  

(9) ( ),t i t i
p=p   where  ,

1    if  (i.e. the system is in state ) 

0     otherwise                                     

t

i t

s i i
p

=
= 


 

This is a vector of zeros, except for a single unit element corresponding to the ruling state. In other words, 

the state indicator follows a discrete time Markov chain with state space { }1 , ..., Ke e  of unit vectors and 

where t ie=p  in state i. The transition probabilities are: 

(10) ( ) ( )1 1 2: , ,ij t t t t tq P s i s j P s i s j s l− − −= = = = = = = …  

and the transition matrix is: 

( )ijq=Q  with 
1

1
K

ij
i

q
=
∑ =   and  0ijq ≥  

 

The conditional expectation of the state indicator vector is defined as: 

(11) ( ) ( )t t t t tE I P s i I= = =p pɶ  

This gives the state probabilities conditional on an arbitrary information set tI . This can be the realized 

state at and before a previous point in time or the distribution of the state vector at any previous point in 

time. Based on (10) we have the following Markov updating formula for the state probabilities: 

(12) 1t t−=Qp pɶ ɶ  

The unconditional expectation of the state vector gives the unconditional probabilities of the states: 

(13) ( ) ( ),π :i i t tE p P s i= = =    where   
1

π 1
K

i
i=
∑ = ;   ̟ = (π1, …, πΚ)′ ( ) 'tE= p  

 

Because the residuals have zero expected value, we have:   

(14) 
1

π µ 0
K

i i
i=
∑ =  

Also, it can be shown that the following relationship holds: 

(15) =Q ̟ ̟  

For instance, when there are only two possible states: 

(16) ( ) ( )1 22 11 22π 1 / 2p p p= − − −  

 

We define the weighted GARCH process to be the weighted average of the component GARCH 

processes, i.e.: 

(17) ( )2,
1

π µ
K

t i i t i
i

h h
=
∑= +  
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This is the best linear predictor of the squared returns when there is no information on the state process. 

Its unconditional expectation can be expressed as the weighted sum of the unconditional expectations of 

the GARCH terms and this will equal the unconditional variance of the residuals:  

(18) ( ) ( ) ( )( )2 2
,

1

ε π µ
K

t t i i t i
i

E h E E h
=
∑= = +  

 

To prove our theoretical results in the next section we shall need to decompose this variance, knowing the 

relative contribution of each GARCH component. To this end we define: 

(19) ( ) ( )1

,i t i tz E h E h
−

=  

(20) 
2

, 1 1η εi t i t itz h+ += −  

It is easy to see that ( ),η 0i tE = . Re-writing (20) in the form 

( ) ( )2
, 1 1 ,η εi t i t t i t i tz h z h h+ += − + −  

we see that ,ηi t  captures two time varying effects for each component, viz.: the deviation of the squared 

return from the weighted GARCH process, and the difference between the individual GARCH process 

and a proportion iz of the weighted GARCH process.  

III.3 Convergence Results 

Our results concern the convergence of a discrete time model to its continuous time counterpart. Thus we 

need to re-write the MS-GARCH model using a notation that facilitates this analysis. In the following the 

pre-subscript stands ∆ for the step-length used. That is, time is indexed as k∆, with k = 1, 2,... where ∆ is 

used for a time series with step-length ∆. We must consider the normalized variance processes obtained 

by dividing by the step length ∆, because we need to compare the variances for processes of different 

frequencies. For the same purpose we shall divide the ∆-step squared error process by ∆ in the GARCH 

formulation.  

 

Thus, for an arbitrary step-length ∆ the MS-GARCH model is specified as follows: 

(21) ∆ ∆ ∆ ∆∆µ εk ky = +  where 
( )

( )
( )( )∆ 1 ∆

∆ ∆ ∆ 1 ∆

1 ∆

ln /
k k

k k k

k

S S
y S S

S

−

−
−

−
= ≅  

(22) ( )
2

∆ , ∆ ∆ ∆ ∆ , ∆ ∆ ∆ , 1 ∆
ω α ε / ∆ βi k i i i k i i kh h −= + +           i = 1,…, K 

(23) ( ) ( )( )( )∆ ∆ ∆ ∆1 ∆ ∆
ε ε µ 0 0 0,1, 2r

i kk k j
E s i j r+ − − = = ≥ =  

(24) ( )( ) ( )( )2 2
∆ ∆ ∆ ∆ ∆ ∆1 ∆ ∆
ε / ∆ µ ε 0 0 0,1, 2r

i k kk k j
E h s i j r+ −− − = = ≥ =  

 

The state indicator vector is: 
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(25) ( )∆ ∆ ∆ , ∆k i k i
p=p   where  

∆ ∆

∆ , ∆

1    if  (i.e. the system is in state ) 

0     otherwise                                            

k

i k

s i i
p

=
= 


 

The unconditional expectation of this does not depend on the observation interval, i.e. ( )∆ tE = ̟p . The 

conditional expectation of the state indicator vector is defined as: 

(26) ( ) ( )∆ ∆ ∆ ∆ ∆ ∆ ∆| |k k k k kE I P s i I= = =p pɶ  

The transition matrix is given by: 

(27) ( )( ) ( ) ( )( )∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆1 ∆ 1 ∆ 2 ∆
: | | , ,ij k kk k kq P s i s j P s i s j s l− − −= = = = = = = …  

( )∆ ∆ ijq=Q  with ∆
1

1
K

ij
i

q
=
∑ =   and  ∆ 0ijq ≥  

We have the following properties:   

(28) 
1

π µ 0
K

i i
i=
∑ =  

(29) ∆ =Q ̟ ̟  

(30) ( )∆ ∆ ∆ ∆ 1 ∆k k−= Qp pɶ ɶ  

The weighted GARCH process and its unconditional expectation are: 

(31) ( )2∆ ∆ ∆ , ∆
1

π µ
K

k i i k i
i

h h
=
∑= +  

(32) ( ) ( ) ( )( )2 2
∆ ∆ ∆ ∆ ∆ , ∆

1

ε π µ
K

k k i i k i
i

E h E E h
=
∑= = +  

Also, we have: 

(33) ( ) ( )∆ , ∆ ∆ ∆/i i k kz E h E h=  

(34) ( ) ( )
2

∆ ∆ ∆ , ∆, 1 ∆ 1 ∆
η εi i ki k kz h+ += −  

with ( )∆ , ∆η 0i kE = , and: 

(35) ( ) ( )( )∆ ∆1 ∆ ∆
ε ε 0r

k k j
E + − =     j ≥ 0;     r = 0, 1, 2 

(36) ( )( ) ( )( )2

∆ ∆ ∆ ∆1 ∆ ∆
ε ε 0r

kk k j
E h+ −− =     j ≥ 0;     r = 0, 1, 2 

 

The above formulation allows us to derive the following results, which are necessary for the continuous 

version of the weak MS GARCH model: 

 

Theorem 1: The class of weak MS GARCH processes has a GARCH component that is closed under 

temporal aggregation.  

 

Proposition 1: The weak MS GARCH model has the following convergence rates: 
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( )( )1 1 1

∆ ∆ ∆
∆ 0 ∆ 0

ω lim ∆ ω ; θ lim ∆ 1 α β ; 0 ω , θi i i i i i i iz− − −

↓ ↓
= = − + < < ∞  

 

III.4 The Need for Markov Switching 

In this section consider the normal mixture (NM) GARCH model that is a reduced form of Markov 

Switching GARCH model where the transition matrix is given by ∆ 1'= ⋅Q ̟ , i.e. a matrix with rank 1. In 

this case the error term is assumed to follow a conditional normal mixture distribution with mixing law ̟: 

(37) ( ) ( ) ( )( )∆ ∆ 1 1 ∆ ∆1 ∆ 1, 1 ∆ , 1 ∆
ε ~ π , ..., π ;µ , ...,µ ; , ...,k K Kk k K kI NM h h− − −  

with the conditional density functions ( ) ( )ε ε
1

ε π φ ε
K

t i i t
i

f
=
∑=  where  

( ) ( )2
ε 2

11

ε µ1
φ ε exp

2σσ 2π

t i
i t

itit −−

 −
= −  

 
. 

 

At each point in time we have one ruling state and in each state the returns follow a normal distribution. It 

is important to differentiate between two different types of conditional distributions. First, when only past 

data is known, as above, the conditional distribution of the residuals is a normal mixture. But when we are 

conditioning on past information and the prevailing state as well, then the conditional distribution is 

normal: 

(38) ( ) ( ){ } ( )( )∆ ∆ ∆ ∆1 ∆ 1 ∆ , 1 ∆
ε , ~ ∆µ , ∆k ik k i kI s i N h− − −=  

 

Proposition 2: The variance of the continuous limit of the NM GARCH is not a Lévy process. 

 

The problem with the NM-GARCH model is that it switches states too often. The history of the ruling 

states has no effect on the next state and the conditional probability of the switches does not depend on 

the step length.  

 

III.5 Continuous Markov Switching GARCH 

We now discuss the continuous time version of MS GARCH, which has the advantage over NM GARCH 

that it limits the number of switches between states when the step length converges to zero. As ∆ 

decreases the transition matrix for MS GARCH converges to the identity matrix and it is possible to attain 

this without modifying the unconditional probability vector. This ensures that at smaller steps the 

conditional probability of jumps decreases whilst the probability of jumps over a given period remains 

unchanged.  

 

We make the following definitions: The continuous state process, a continuous time Markov chain and 

the continuous variance processes, provided these exist, are: 
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(39) ( ) ∆
∆ 0
lim ts t s
↓

=    where   ∆ ∆ ∆t ks s=    for  k∆ ≤ t < (k+1)∆    

(40) ( ) ( ) ( ){ } ∆ ,
∆ 0
limi i tV t V t s t i h
↓

= = =   where   ∆ , ∆ , ∆i t i kh h=  for  k∆ ≤ t < (k+1)∆    

The continuous time state probability vector and its expectation are: 

   ( ) ∆
∆ 0
lim tt
↓

=p p    where   ∆ ∆ ∆t k=p p    for  k∆ ≤ t < (k+1)∆    

(41) ( ) ∆
∆ 0
lim tt
↓

=p pɶ ɶ  where  ∆ ∆ ∆t k=p pɶ ɶ   for  k∆ ≤ t < (k+1)∆ 

and the continuous time transition rate (or generator) matrix is:  

(42)   ( ) ( )1

∆
∆ 0

λ lim ∆ij
−

↓
= = −Q IΛ  with 

1

λ 0,   and λ 0
K

ij ij
i

i j
=
∑> ≠ =    

whence =Λ̟ 0  where 0 is a vector of zeros.4 The off-diagonal elements of the transition rate matrix are 

positive and the diagonal elements are negative and equal in absolute value to the sum of the other 

elements in the same column. By definition5 

 ( )∆ ∆ o ∆= + +Q I Λ  

In other words, during a time interval of length ∆: 

 ( ) ( )one jump from state to state ∆λ o ∆ijP j i = +  

 ( ) ( )no jump from state to state 1 ∆λ o ∆ijP j i = − +  

 ( ) ( )more than one jump from state to state o ∆P j i =  

 

It follows that if the continuous time Markov chain ( ){ }s t  has holding times { }kH  (i.e. the duration of 

the time periods spent in a state) and jump times { }kJ  (i.e. the points in time at which the chain switches 

to a different state) where 
1

k

k i
i

J H
=
∑=  and J0 = 0, then the holding times are independent and follow an 

exponential distribution and the jump times follow a Poisson distribution, i.e.: 

 P(the chain jumps from state j in an interval of length t) = ( ) ( )1 exp λk jP H t t≤ = − −  

 P(k jumps from state j in an interval of length t) = ( )
( ) ( )
λ

exp λ
!

k

j

k j

t
P J t t

k
≤ = −  

where λ λj ij
i j≠
∑= . The proof can be found in the classical literature on continuous time Markov chains, 

for example, in Ethier and Kurtz (1986). 

 

                                                      

4 On the other hand, the transition matrix of the NM-GARCH remains unchanged when the step length decreases; it 
is inflexible. Because of this the conditional probability of jumps remains unchanged, forcing the number of jumps 
over a given period of time to converge to infinity. This way the transition rate matrix will not exist – and this is why 
the NM GARCH model does not have a continuous time version.  
5 Here ( ) ( )( )of x g x= means that ( ) ( )( )lim 0f x / g x =  as x → 0. 
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To derive the continuous time MS GARCH we shall use the weak convergence results of Stroock and 

Varadhan (1996) and for this we must assume that the following limits exist and are finite: 

(43) 
1

∆
∆ 0
lim ∆−

↓
=α α ; ( )1

∆
∆ 0
lim ∆−

↓
= −ψ 1 β   

with α 0i ≥ , ψ 0i >  and 1 is a vector of ones. Here ∆ω , ∆α and ∆β are K × 1 vectors of the GARCH 

coefficients in the discrete MS GARCH process. Note that under the condition that ∆α converges to a 

positive constant at rate ∆ , the variance processes would not converge. 

 

Consider the first two conditional moments and the conditional skewness and kurtosis:6 

( )( )1

∆ , ∆ ∆ ∆ ∆ ∆ ∆1 ∆
µ ∆ ε ,i k k kkE I s i−

+= =  

( )( )22 1

∆ , ∆ ∆ ∆ , ∆ ∆ ∆ ∆ ∆1 ∆
σ ∆ ε ∆ µ ,i k i k k kkE I s i−

+
 = − = 
 

 

( ) ( )( )313/2 3

∆ , ∆ ∆ , ∆ ∆ ∆ , ∆ ∆ ∆ ∆ ∆1 ∆
τ ∆ σ ε ∆ µ ,i k i k i k k kkE I s i

−

+
 = − = 
 

 

( ) ( )( )412 4

∆ , ∆ ∆ , ∆ ∆ ∆ , ∆ ∆ ∆ ∆ ∆1 ∆
η ∆ σ ε ∆ µ ,i k i k i k k kkE I s i

−

+
 = − = 
 

 

Now the conditional variance and the BLP series for the squared residuals will converge to the same 

process: 

( ) 2

∆ ,
∆ 0
lim σi i tV t
↓

=  where   
2 2

∆ , ∆ , ∆σ σi t i k=  for k∆ ≤ t < (k+1)∆. 

if the following limits exist: 

 ( ) ∆
∆ 0

ε lim εtt
↓

=     where   ∆ ∆ ∆ε εt k=   for  k∆ ≤ t < (k+1)∆    

( ) ∆ ,
∆ 0

µ µ lim µi i tt
↓

= +     where   ∆ , ∆ , ∆µ µi t i k=   for  k∆ ≤ t < (k+1)∆ 

Thus BLP of the squared residuals in a given state is ‘close’ to the corresponding conditional variance 

process, and it is reasonable that as the step length ∆ converges to zero  

(44) ( )1/2 2

∆ , ∆ ,
∆ 0
lim ∆ σ i t i th−

↓
− < ∞  

This is because the BLP process becomes more and more informative as the time step decreases and so it 

should converge fast to the conditional variance.  

 

We also have: 

( )( )1 2 2 2

∆ ∆ ∆ ∆ ∆ , ∆ ∆ , ∆1 ∆
∆ ε , σ ∆ µk k i k i kkE I s i−

+ = = +  

                                                      

6 Recall that we divide by ∆ when computing the conditional mean and variance series because these are additive in 
time. 
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and at least one of the processes ∆ , ∆µi k  and 
2

∆ , ∆ ∆ , ∆σ i k i kh−    must be different from zero, otherwise the 

process is a semi-strong MS-GARCH and looses the aggregation property. Additionally, the conditional 

expectation of the second moment and the kurtosis in a given state must be positive. The above 

construction allows us to prove the following main result: 

 

Theorem 2: If the limits given in (42), (41) and (43) exist then the continuous time counterpart of the 

Markov switching GARCH process is:  

(45) 

( )
with

dS
dt VdB

S

dV d dJ dJ d

d V dt

d dt

= +

+ =

= + −

=

p µ

p V p V

V ω α ψ V

p Λp

⊙

ɶ ɶ

'

' '=  

and we have dropped the time dependence of the processes here for ease of notation.7 

 

However, this model is not appropriate for pricing equity or commodity options since it does not capture 

asymmetric volatility responses to market shocks. We also study the asymmetric extensions of MS 

GARCH; these are based on the AGARCH model of Engle and Ng (1993) and the GJR model of 

Glosten et al. (1993). Interestingly, it is only the MS AGARCH, and not the MS GJR-GARCH  model 

that has state-dependent leverage effects in the limit, as the following corollary shows: 

 

Corollary 1: The continuous time limit of the Markov switching AGARCH process with 

 ( ) ( )( )21

∆ ∆ ∆ ∆ ∆ ∆ ∆ , ∆, 1 ∆ 1 ∆
ω α ∆ ε ξ βi i i i i ki k kh h−

+ += + − +       i = 1,…, K 

is given by (45) with the third equation replaced by:  

 ( )d V dt= + + −ω α ξ ξ α ψ⊙ ⊙ ⊙V V  

where ( )
0

ξ limi hi h↓
= =ξ ξ . However, the model given by the GJR parameterisation with 

( ) ( ) ( ) ( )
2 2

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ , ∆, 1 ∆ 1 ∆ 1 ∆ 1 ∆
ω α ε / ∆ ξ ε / ∆ βi i i i i ki k k k kh d h−

+ + + += + + +     i = 1,…, K 

where ∆ td
− = 1 if εt  < 0, and 0 otherwise, has the same limit as the MS-GARCH model. 

 

The details of the proof are similar to those in the proof of Theorem 2 and are therefore omitted from the 

appendix for the sake of brevity. The reason why the GJR parameterisation has no asymmetric response 

in its limit is that whilst ∆ td
− is finite, it does not converge when ∆ ↓ 0. However, it converges to the model 

in Theorem 2 under the condition ∆
∆ 0

0 lim ξ i↓
= , for all i. 

                                                      

7 The notation ⊙  stands for the element-by-element product. 
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IV PROPERTIES OF THE CONTINUOUS MS GARCH MODEL 

This section describes the stochastic returns and variance processes of the MS GARCH model, quantifies 

the state risk premium and then expresses the model in the risk neutral measure. 

 

IV.1 Stochastic Returns and Variance Processes  

The continuous MS GARCH model (45) has the following interpretation: The returns follow a stochastic 

process where the drift depends on the ruling state and the diffusion is determined by the realized 

variance ( )V t . The vector of state-variances is a stochastic process with state dependent mean-reversion. 

The change in the realized variance is given by two factors. First it depends on the change in the variance 

process of the ruling state and secondly, if there is a switch in the states, it depends on the difference 

between the variances of the new and old states. If there is no switch then ( )d tp is the zero vector; 

otherwise it will have the values –1 and 1 for the jth and ith elements, respectively, if we switch from state j 

to state i.  

 

This way the size of the jump in the volatility process (i.e. the square root of the variance process) will 

vary stochastically with time, as depicted in Figure 1 for the case K = 2. Each state has its own long-term 

volatility. Following a jump from the low volatility state 1 to the high volatility state 2 the individual 

volatility in state 1 generally increases. 

 

Figure 1: Realised Volatility Jumps between 2 States 
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Note that the drift in this model changes at the same time as the volatility jumps because the first equation 

in (45) can be rewritten as (this should not be confused with a jump in the price):  

( )
( )

( ) ( )µ σ
dS t

t dt t dB
S t

= +  with ( ) ( )µ 'd t d t= p µ  

 

The jump times are stochastic, being governed by the state process (a continuous Markov chain), the jump 

probabilities are given by the conditional expectation of the state vector, and the state probability 

dynamics are given by the last equation. On setting ∆
∆ 0
limi ih y
↓

=  with 

( ) ( ) ( ) ( )11 2 1 1 1 2
∆ ∆ , ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆1 β ω α ∆ 1 β ∆ ω ∆ αi i t i i i i i iy E h s s

−− − − −  = = − + = − +     and 

2 2
∆ ∆ ,ε / ∆i ts E  =    

we see that each of the deterministic GARCH components converges to a different constant steady state 

forward variance, given by:  

( ) ( )1 2ψ ω αi i i i ih E h t s−= = +    

where ψi  is the speed of mean reversion and ( )( ) ( )2 2 2 2

∆
∆ 0 1 1

lim π µ π µ
K K

i i i i i i
i i

s s E h t h
↓ = =

∑ ∑ = = + = +  
 

gives the unconditional variance. We get that: 

( ) ( )
1

2 1 1 2

1 1

1 ψ π α π ψ ω µ
K K

i i i i i i i
i i

s
−

− −

= =
∑ ∑= − +  

For the normal mixture AGARCH model, the speed of mean-reversion remains unchanged but the 

unconditional variance to which the component variances mean-revert becomes: 

( )1 2 2ψ ω α φ αi i i i i ih s−= + +  

where 

( ) ( )
1

2 1 1 1 2 2

1 1

1 ψ π α π ψ ω ψ α φ µ
K K

i i i i i i i i i i
i i

s
−

− − −

= =
∑ ∑= − + +  

 

For the normal mixture GJR model, since the continuous model is the same as for the GARCH, the 

above properties remain the same. 

 

We conclude that the continuous MS GARCH model has a rich and flexible structure, admitting state-

dependent mean-reversion through different volatility components and capturing long-term smile and 

skew effects through state-dependent volatility and drift and volatility, respectively.  
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IV.2 Hedging State Uncertainty 

In this section we examine the price and variance risk premia in the continuous MS GARCH model, and 

in the case when there are only two states we quantify the hedge ratios for state uncertainty and specify 

the dynamics of a contingent claim. 

 

Proposition 3: The state-dependent drift has no effect on the price risk premium.  

 

However, the continuous MS GARCH model does not have the standard volatility risk premium that 

arises in models where a second Brownian motion drives the volatility and which represents the additional 

volatility drift under the real-world measure compared with the risk-free measure. The volatility risk-

premium in the continuous MS GARCH model has a different interpretation since the volatility process 

has no diffusion, only a jump process. The source of uncertainty is the state process, so we should call this 

a state risk premium rather than a volatility risk premium.  

 

Denote a contingent claim with price at time t by ( ) ( ) ( )( ), ,f t f t S t V t=  or, for brevity, 

( ), ,f f t S V=  

as it should be understood that the claim price, the underlying price S and its variance V are all time 

dependent. Since the jump in the variance process is independent of the Brownian motion of the price 

process, Ito’s lemma gives: 

 20.5t S SS Vdf f dt f dS f S Vdt f dV f f − = + + + + −   

where subscripts denote partial derivatives and the last term is the change in the derivative’s value due to 

the jump in the variance process; in the following this will be denoted by Jdf . Given the underlying 

process specified by (45) the claim price dynamics can be further expressed as: 

(46)   
( )( ) 2

ξ

ξ ' 0.5

J
S

t S V SS

df dt f VSdB df

f f S f V d f VS

= + +

= + + + − + +p µ p ω α ψ V p V⊙
' '

 

 

Not surprisingly, it is impossible to replicate the claim price with positions only in the underlying only. 

The risk of volatility jumps cannot be hedged with the underlying alone, due to the independence of the 

Brownian and the jumps. For simplicity consider a two-state world and take two claims with prices 

1 2 and f f . 

 

Proposition 4: The state uncertainty hedged portfolio П that is long one unit of the underlying and short 

A1 and A2 units of the two claims has price: 

 1 1 2 2Π S A f A f= − −  

where the hedge ratios are given by: 
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(47) ( )2 2 1
1

1 1 2∆ ∆J J JA df df df
−

= −   and  ( )1 1 2
1

2 2 1∆ ∆J J JA df df df
−

= −  

 

Note that perfect hedging with the underlying and a second derivative is possible only in two-state 

models. In this case we can be certain about the size of jump in the variance process even if the time of 

the jump is not known. If we have more than two states then it is not just the timing of the jump that is 

uncertain, but the size of the jumps as well. Hence the change in the value of the claim explained by the 

jump would depend on the new state. This way it can be seen that additional claims will be needed for 

hedging (indeed the number of claims needed for hedging is K – 1, where K is the number of states). With 

two states only, the new state is always the ‘other’ state, so hedging can be done using the underlying and a 

second derivative.  

 

In practice to hedge a long call in a two-state model, 1/A1 units of the underlying need to be sold short 

and A2 /A1 calls (of different type than the original) need to be shorted or puts bought. The hedge ratios 

(47) can be reformulated as: 

 ( ) 1

1 1 12 2∆ ∆A f
−

= −   and  ( ) 11
2 2 12 1∆ ∆A f

−−= −  

where 
1

2
12

J

J

df
f

df
= . 

 

Hence the state uncertainty leads to hedge ratios that are not equal to one over delta in each state. Instead 

the delta in each state is augmented by a multiple of the delta in the other state. The multiple 12f  is the 

change in value of the claim due to the variance jump when jumping from state 1 to state 2, relative to the 

value change when jumping from state 2 to state 1. Since the value change is positive when jumping from 

state 1 to state 2, but negative when jumping from state 2 to state 1, 12 0f < . 

Theorem 3: In the continuous MS GARCH model a claim with price ( )f t has the following dynamics: 

 ( )( )λ J J
S s S Sdf r f Sf df f S dt f VSdB df= − − + + +µ'p  

where  

 ( )( ) ( )( )( ) 12

, , , ,λ ' 0.5 σ 1, 2iJ
s i t i V i SS i S if f V d f VS r Sf f df i

−
= + + − + + + − =ω α ψ V p V⊙

'p  

is the ‘market price of state risk’. This way, the market is arbitrage-free but incomplete. 

 

There are two sources of risk: the Brownian motion in the return and the state variable. Therefore the 

market is incomplete, and so there are no unique prices for the options. The state risk is not diversifiable 

and thus it is priced. We define the risk-neutral measure Q with: 

(48)
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( )
( )

( ) ( )
( )

( ) ( ) ( )( ) ( )
2

00 0 0

1
exp λ η ln 1 η

σ 2 σ

t t t

s t

s r s rdQ
dB s ds s s ds s N s

dP s s < ≤
∑∫ ∫ ∫

  − − = − − − + + ∆     

µ µ
' '

p p

 

with respect to which B* will be a Brownian motion. Then, under the risk-neutral measure the underlying 

process can be rewritten as: 

(49) 

( )

*

*

dS
rdt VdB

S

dV d dJ with dJ d

d V dt

d dt

= +

+ =

= + −

=

p V p V

V ω α ψ V

p Λ p

⊙

ɶ ɶ

' '=  

where ( )( )* '= +Λ Λ 1 1 η⊙ , 1 is a vector of ones and ( ) ( )η 't t= p η , ( ) ( )λ 't t= p λ  with η = (η1, η2)′ 

and λ = (λ1, λ2)′. The option pricing can be based on either a non-recombining tree or simulation for the 

variance process. 

 

IV.3 Discretizing the Continuous MS GARCH Model 

When discretizing this process, first we substitute the continuous time model with a discrete time one 

where post-subscript denotes time and we approximate ω by 1ωh h− , α by 1αh h− and ψ by ( ) 11 βh h−− . All 

differences are forward differences. One important approximation has to be made. We know that 

( )( )2dB t dt=  so ( ) ( )( )2B t h B t h+ − ≈ . 

Also, ( ) ( )( )ε µ σt h t
h t h h t

t

S S
h B t h B t

S
+

+

−
= − = + −  so ( )2σ t dt  can be approximated by: 

 ( ) ( )( ) ( ) ( )( )( )222 2 2σ σ σ εh t h t h t h t hh B t h B t B t h B t +≈ + − = + − =  

This leads to the following discretization: 

( ) ( )( )

( )2 2 2 2

µ σ

σ σ ω α σ 1 β σ

t h t
h t

t

h t h h t h t h t

S S
h B t h B t

S

h h h

+

+

−
= + + −

− = + − −

 

which can be rewritten as: 

 
2 2 1 2

µ ε

σ ω α ε β σ

t h t
h t h

t

h t h h t h h t

S S
h

S

h

+
+

−
+ +

−
= +

= + +

 

which is the same as the original GARCH.  
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V SUMMARY AND CONCLUSIONS  

We consider the continuous time version of the MS GARCH of Haas, Mittnik and Paolella (2004b). For 

this model, with both symmetric and asymmetric GARCH variance components, showed that the 

continuous time analogue is a stochastic model where the variance jumps between several time-varying 

processes, but it has no diffusion. Also, we derive the state risk premium and hedge ratios for contingent 

claims priced with this model.  

 

Stochastic volatility models where the variance follows a diffusion are considered to be successful tools 

for option pricing. Some might say that much is lost by not having a diffusion in the variance process in 

our limit model; however, much is gained by having a multi-state variance process. In discrete time 

GARCH the squared residuals introduce uncertainty to the variance, a stochastic feature that is, sadly, lost 

in continuous time when multiple states are considered. The reason for this leads to the limit of stochastic 

modelling, namely that, with some exceptions, Brownian motions and jump processes are the only basic 

processes used in financial modelling – and these prove to be not enough to keep the stochasticity of 

discrete time GARCH models in continuous time. 

 

In line with the results of Corradi (2000), Wang(2002), Brown, Wang and Zhao (2002) and Duan et al. 

(2005b) we have made assumptions under which the normal GARCH process can be extended to 

continuous time. Nelson’s (1990) result that the limit is a stochastic volatility model is more intuitive; 

however, his assumptions cannot be generalized to GARCH models with more than one volatility state, 

whilst it is recognised that such models are required for explaining the empirical behaviour of asset returns 

and implied volatility. Our assumptions, that both α/h and (1 – β)/h converge as the time-step goes to 

zero, are also more intuitive than assuming that only their sum and α2/h converge and they are essential 

for the existence of the limit of multi-state GARCH models. Since the strong versions of MS GARCH are 

not aggregating in time, we have given and used the weak definition that is not sensitive to the choice of 

step length.  

 

Also, we showed that the normal mixture GARCH model, which is a reduced form of MS GARCH with 

state-independent conditional probabilities, has no continuous-time limit. This model has infinite variation 

in the variance, and no tools are available yet to model such processes.  

 

There is a growing literature on models that have jumps in the volatility process. These have been shown 

to offer a good time-series and option pricing fit. Some of the problems with the models considered in the 

literature are that they do not model jump clustering and they do not allow for different speeds of mean-

reversions at different levels of volatility (Duan, Ritchken and Sun, 2005a), but our framework allows for 

both these features.  
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Option pricing with normal mixture and Markov Switching GARCH processes is likely to be an important 

area for future research. These processes can be consistent with a volatility surface that has smile and skew 

effects that change with maturity but still persist longer than the central limit theorem would imply, as the 

conditional skewness and kurtosis are time varying and the unconditional skewness and kurtosis is non-

zero. Perhaps the most important feature of the model is that is captures regime dependent behaviour of 

the volatility surface, with different mean reversion and leverage effects in different market regimes. Very 

few other volatility models are able to capture such intricacies in the behaviour of implied volatility. 
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APPENDIX  

Proof of Theorem 1 

We present the proof for n = 2. The proof for general n-period time intervals follows by induction.  

From (4) we get that: 

( )1 2
1 ,2 1 1 1 1 1 2 1 1 1 ,2 1ω α β ε β ηi k i i i i i k i i kh z z−

+ + += + + −  

This can be rearranged as: 

( ) ( ) ( ) ( )22 1 1 2 1 1
1 2 2 1 1 1 1 1 1 2 1 ,2 2 1 1 ,2 1 1 1 1 1 ,2ε ω 1 α β α β ε η α η β α β ηi k i i i i i i i i k i k i i i k i i i i i kz z z z z z− − − −

+ + += + + + + + + − +

 

Repeating this equation for time step 2k+1 and summing yields: 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )( )

2 22 1 1 2 1

2 1 1 1 1 1 2 2 1 2 2 1 2 1 1 1 1 2 1 2 12 1

1 1 1 1

1 ,2 2 1 1 ,2 1 1 1 1 1 1 ,2 1 1 1 1 ,2 1

ε 2 ω 1 α β α β ε / 2 ε ε α β ε ε

η 1 α η α β α β η β α β η

i i i i i i i i i k i k k i i i i k kk

i k i i i k i i i i i i i k i i i i i k

z z z z z z z

z z z z

− − −
+ + −+

− − − −
+ + −

= + + + + + − +

+ + + + − + − +

 

where we have used the following relationship for returns: 

 ( ) ( )22 2 2

2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2 12 1
ε ε ε ε ε 2 ε εk k k k k kk + + + + + ++ = + = + +  

Letting 

( ) ( )
( ) ( )( ) ( )( )

21

1 2 2 1 2 1 1 1 1 2 1 2 1,2 1

1 1 1 1

1 ,2 2 1 1 ,2 1 1 1 1 1 1 ,2 1 1 1 1 ,2 1

2 ε ε 2 α β ε ε

η 1 α η α β α β η β α β η

i k k i i i i k ki k

i k i i i k i i i i i i i k i i i i i k

v z z z

z z z z

−
+ + −+

− − − −
+ + −

= − +

+ + + + − + − +
 

we can now write 

( ) ( ) ( ) ( )
22 1 1 2

2 1 1 1 1 1 22 1 ,2 1
ε 2 ω 1 α β α β εi i i i i i i i i khk i kz z z z v− −

+ += + + + + +  

and it can be shown that: 

( ),2 0i kE v =  

(50) ( ) ( )( ),2 1 ,2 1
0i k i k lE v v+ + − =    for l > 1 

( )( ),2,2 1 2

λ
,

1 λ
i

i ki k

i

Corr v v+

−
=

+
 

for some λi ∈ (0, 1). We now define w i,2(k+1) by: 

(51) 0 0i iw v=   and  ( ) ( ) ,2,2 1 ,2 1
λ i i ki k i kw v w+ += +  

Obviously ( ),2 0i kE w =  and it can be shown that  

( ) ( )( ),2 1 ,2 1
, 0i k i k lCorr w w+ + − =  for l ≥ 1. 

 Rewriting (51) as 

 ( ) ( ) ,2,2 1 ,2 1
λ i i ki k i kv w w+ += −  
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we have: 

(52) ( ) ( ) ( ) ( )( )22 1 1 2 2
2 1 1 1 1 2 2 2 2 ,22 1 ,2 1
ε 2ω 1 α β α β λ ε 2λ ε λi i i i i i i i i i k i i k i i kk i kz w z z z z w− −

+ +− = + + + + − + −  

Now we define  

( ) ( )
2

2 ,2 2 2 1 ,2 1
εi k i k i kh z w+ += −  

Hence (52) becomes: 

( ) ( )( ) ( )
21 1 2

2 ,2 1 1 1 1 1 2 2 2 ,2 1
ω 1 α β α β λ ε λi k i i i i i i i i i k i i kh z z z h− −

−= + + + + − +  

and this is the updating formula for the new two-period conditional variances of each component. Hence 

when n = 2 the new parameters are 

( )1
2 1 1 1ω ω 1 α βi i i i iz−= + +  

( )( )21
2 1 1 2α α β βi i i i i iz z−= + −  

and ( )2β 0,1i ∈  is the solution to ( ) 2
, , 2 2

2

β
,

1 β
i

i t i t

i

Corr v v −

−
=

+
.  

 

In general, after annualisation, the parameters of ,n i th , for n > 1 integer, will be given by: 

( )( )( ) 11 1
1 1 1 1 1ω ω 1 α β 1 α β

n

n i i i i i i i iz z
−− −= − + − −  

( )( )1
1 1α α β β

n

n i i i i i n iz z−= + −  

and ( )β 0,1n i ∈  is the solution to ( ), , 2

β
,

1 β
n i

i t i t n

n i

Corr v v −

−
=

+
where 

( )

( )
( )( )min ,2 1

1
, , 1 1 1 1 1 1

0 max 0, 1 0 0

η / 2 ε ε α β ε ε /
p nn n

i t k i t p i t r t s i i i t n r t n s
p k p n r s n r s n

v c n z z n
− −

− − − − − − −
= = + − ≤ < < ≤ < <
∑ ∑ ∑ ∑

 = + − + 
 

 

and     ( )
( )

11 1

1 1 1

11

1 1 1

1 0

α α β 1 1

β α β

k

k i i i i i

n

i i i i

if k

c z z if k n

z if k n

−− −

−−

 =



= + ≤ ≤ −

 − + =

 

Also, it follows trivially that: 1µ µn i i= , 1π πn i i=  and 1
n

n =Q Q      □ 

 

Proof of Proposition 1  

It can be seen that ( )1/∆1
∆ ∆α βi i iz− + is a constant between 0 and 1, so we denote this by θie− , θi > 0. 

Therefore 1 θ ∆
∆ ∆α β i

i i iz e− −+ =  and so: 
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( )( ) ( )1 1 1 θ ∆

∆ ∆
∆ 0 ∆ 0
lim ∆ 1 α β lim ∆ 1 θi

i i i iz e− − − −

↓ ↓
− + = − =  

Also, we have that ( ) 1θ ∆
∆ω 1 i

i e
−−−  is a positive constant that we denote by 1ω θi i

−  where ωi > 0, so that 

( )θ ∆ 1
∆ω ω 1 θi

i i ie− −= − . As a result: 

( )1 1 θ ∆ 1

∆
∆ 0 ∆ 0
lim ∆ ω ω lim ∆ 1 θ ωi

i i i ie− − − −

↓ ↓
= − =   □ 

 

Proof of Proposition 2 

We prove that the variance of the limiting model does not satisfy the stochastic continuity condition, i.e. 

we show that: 

 ( ) ( )( )
0

  η lim η 0
l

t P V t l V t
↓

∀ ∃ ∋ + − ≥ >  

To prove this assume that K = 2, the unconditional individual variances are 1h  and 2h  and the mixing law 

is (π, 1 – π)′ with 0 < π < 1. That is, if we are in state 1 the probability of a jump in the volatility is 1 – π 

and if we are in state 2 the probability of a jump in the volatility is π. At a given point in time t, not 

knowing the ruling state, the probability of a switch in the state is 2π(1 – π). The expected size of the jump 

over an arbitrary time interval l is ( )2 1h V t− if in state 1 and ( )1 2h V t−  if in state 2.  

 

Let ( ) ( ){ }2 1 1 2η min ,h V t h V t= − − . Then 

 ( ) ( )( ) ( )η 2π 1 πP V t l V t+ − ≥ = − . 

The above probability is the same for any l so its limit as the step length converges to zero is 2π(1 – π), 

which is strictly positive. Hence the stochastic continuity condition for a Lévy process is not satisfied for 

the variance, and we conclude that the continuous-time limit of the variance process of the NM-GARCH 

does not exist.            

 

It can be seen that the variation and quadratic variation of the variance process is infinite not just when 

the classical definition of convergence is used, but also when the limit in probability is applied. Consider 

the quadratic variation of the variance using probability limits.8 Take an arbitrary time interval [a, b] and a 

step length ∆. Construct a partition for this interval ( )
∆

∆ ∆0, ,
, ∆i ii n

t t a i
=

= +
…

 where 

( )∆ / ∆n b a= −    is the number of steps in the interval. Define the quadratic variation as: 

 [ ]( ) ∆
∆ 0

, limhV a b p S
↓

=  with ( ) ( )
∆ 2

∆ ∆ ∆ 1
1

n

i i
i

S V t V t −
=
∑= −  

Then 

                                                      

8 This is important since Lévy processes have finite quadratic variation when convergence in probability is used. 
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 ( ) ( )( ) ( )
22

∆ ∆ 1 1 22π 1 πi iE V t V t h h−− > − −  

 ( ) ( )
2

∆ ∆ 1 22 π 1 πE S n h h> − −  

The variance of ( ) ( ) 2

∆ ∆ 1i iV t V t −−  is finite. Also, 

 ( ) ( ) ( )( )2∆ ∆ ∆ ∆ 1i iVar S n Var V t V t −= −  

We have by the central limit theorem: 

 ( )( ) ( ) ( )∆ ∆ ∆ ∆/ ~ 0,1
a

Z S E S Var S N= −  

where the normal distribution is an approximation. For an M > 0 we have that:  

 

( ) ( )( ) ( )( )
( )( ) ( ) ( )

( )

∆ ∆ ∆ ∆

2 2

∆ ∆ 1 2 ∆ ∆ ∆ 1

∆

Ρ Ρ /

Ρ 2 π 1 π /

Ρ 1

i i

S M Z M E S Var S

Z M n h h nVar V t V t

Z

−

> = > −

 ≥ > − − − − 
 

→ > −∞ =

 

Thus, we again obtain that the variance of the limit of normal mixture GARCH models is not a Lévy 

process.                                                                                                                        □ 

 

Proof of Theorem 2  

Consider first the returns process. For the drift per unit time we have: 

( )
( )( )∆1 ∆1 1

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ , ∆1 ∆

∆

∆ , µ ∆ ε | , µ µ
kk

k k k k i kk

k

S S
E I s i E I s i

S

+− −
+

 − 
= = + = = +     

 

and the square drift per unit time is 

( )
( )( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

2
2∆1 ∆1 1

∆ ∆ ∆ ∆ ∆ ∆ ∆1 ∆

∆

2 1 2 1 2

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆1 ∆ 1 ∆ 1 ∆

2 2 2

∆ , ∆ ∆ , ∆ ∆ , ∆ ∆ , ∆ ∆ , ∆ ∆ , ∆

∆ , ∆ ∆µ ε ,

∆µ ∆ ε 2µ ε , ∆ ε , o 1

σ ∆ µ o 1 σ o 1 o 1

kk

k k k kk

k

k k k kk k k

i k i k i k i k i k i k

S S
E I s i E I s i

S

E I s i E I s i

h h h

+− −
+

− −
+ + +

 −    = = + =   
     

= + + = = = +

= + + = + − + = +

 

so the conditional first and second moments per unit time converge to ( ) ( ) ( )µ and if i it V t s t i= as ∆ ↓ 

0. For the state-variances we can write: 

 
( )( )( )

( ) ( )

1
∆ ∆ , ∆ ∆ ∆, 1 ∆

1 1 1

∆ ∆ ∆ , ∆ ∆ ∆ , ∆

∆ ,

∆ ω ∆ α ∆ β 1 o 1

i k kh ki k

i i j k i i k

E h h I s j

h h

−
+

− − −

− =

= + + − +
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We need the limit to exist and be finite when h → 0 for i = 1, …, K and this forces us to have separate 

limits for the α and β parameters. The variances and covariances of the individual variance components 

converge to zero: 

( )( ) ( )( )( ) ( )1
∆ ∆ , ∆ ∆ ∆ , ∆ ∆ ∆ ∆, 1 ∆ , 1 ∆

∆ , o 1i k j k k ki k j kE h h h h I s l−
+ +− − = =  

 

The covariance between the returns and the changes in the variances converges as follows: 

( )
( )( )

( )( ) ( ) ( )( )( ) ( )

∆1 ∆1

∆ ∆ , ∆ ∆ ∆ ∆, 1 ∆

∆

1 1 2

∆ ∆ ∆ ∆ ∆ , ∆ ∆ ∆ ∆1 ∆ 1 ∆

∆ ,

∆ ∆µ ε ω ∆ α ε β 1 , o 1

kk

i k k ki k

k

i k k kk k

S S
E h h I s j

S

E h I s j

+−
+

− −
+ +

 − 
− =     

= + + + − = =

 

Finally, to derive the process for the conditional probabilities we have: 

 ( )( )( ) ( )( ) ( )1 1 1
∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆1 ∆ 1 ∆

∆ ∆ ∆k kh k kk kE I− − −
+ +− = − = −p p p p Q I pɶ ɶ ɶ ɶ ɶ  

 
( )( ) ( )( )( )
( )( ) ( )( ) ( ) ( )

∆

1

∆ ∆ , ∆ ∆ ∆ , ∆, 1 ∆ , 1 ∆

1 1

∆ ∆ ∆ , ∆ ∆ , ∆

∆

∆ ∆ ∆ o 1 o 1

i k j k ki k j k

i i i j j j i k j k

E p p p p I

e e p p

−
+ +

− −

− − =

= − − − − + =Λ Λ ɶ ɶQ Q
 

where ie  is the i th row of the identity matrix I and the subscript i for Λ symbolizes the i th row of the 

transition rate matrix.           □ 

 

Proof of Proposition 3 

The price risk premium, λe is such that: 

 ( ) ( )( ) ( ) ( )exp exp λ 0ert E S t t S− =  

and for the continuous MS GARCH model:  

(53) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

1
0 exp

2

t t t

S t S s ds V s ds V s dB s∫ ∫ ∫
 = − + 
 

p µ
'

 

Now 

 ( ) ( ) ( ) ( )
0 0 0

exp exp exp exp exp µ
t t t

E s ds E s ds ds t t∫ ∫ ∫
        = = = =                

p µ p µ ̟ µ ̟ µ
' ' ' '  

since ̟, the unconditional expectation of p, also determines the realized frequency of the regimes. But 

 ( ) ( ) ( )
0 0

exp σ exp 0.5 exp 0.5
t t

E s dB s ds t∫ ∫
    = =        

̟ h ̟ h' '  

and: 

 ( ) ( )2

0 0

exp σ exp exp
t t

E s ds ds t∫ ∫
    = =        

̟ h ̟ h' '  

so that ( )( ) ( ) ( )0 exp µE S t S t= . Therefore λ µe r= −  as in standard geometric Brownian motion.  
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Proof of Proposition 4 

We have: 

 1 1 2 2Πd dS A df A df= − −  

This can be further expressed as: 

( )( ) 1 2

1 1, 2 2, 1 2Π ζ 1 J J
S Sd dt A f A f VSdB A df A df= + − + − −  

where  

(54) 
( ) ( )( )
( ) ( )( ) ( )

1 1, 2 2, 1 1, 2 2,

2

1 1, 2 2, 1 1, 2 2,

ζ 1

    ' 0.5

t t S S

V V SS SS

A f A f A f A f S

A f A f V d A f A f VS

= − + + − +

− + + − + − +

p µ

p ω α ψ V p V⊙

'

'
 

This portfolio is risk-free if, in addition to the term in dB being zero, the change in portfolio value does 

not depend on the state. Hence the following two conditions must hold: 

 1 2

1 1 2 2

1 2

,

∆ ∆ 1

0

where ∆ , 1, 2

J J

i i S

A A

A df A df

f i

+ =

+ =

= =

 

and solving for A1 and A2 gives the result. 

 

Proof of Theorem 3 

To avoid arbitrage opportunities, the following must be satisfied: 

 Π Πd r dt=  

That is, 

 ( )1 1 2 2ζdt r S A f A f dt= − −  

Using  (54) this can be further expressed as: 

( ) ( )( ) ( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 1 1 1 1 1

1, 2, 1 2 1, 2,

1 1 1 1 2

1, 2, 1, 2,

1 1 1 1

1 2 1 2

∆ ∆

' 0.5

∆ ∆

J J J J J J
t t S S

J J J J
V V SS SS

J J J J

df f df f df df df f df f S

df f df f V d df f df f VS

r S df df df f df f

− − − − − −

− − − −

− − − −

− − − − −

+ − + − + + −

= − − + −

p µ

p ω α ψ V p V⊙

'

'

 

We obtain that for each derivative the following expression is equal with the same constant: 

( ) ( )( ) ( )1 2

, , , ,' 0.5iJ
i t i V i SS i S idf f f V d f VS r Sf f

−
 − + + − + + + − p ω α ψ V p V⊙

'
 

We denote this by λ s . The result follows by noticing that ξ can be expressed as: 

( )( )
( )

2ξ ' 0.5

λ

t V SS S

J
S s S

f f V d f VS f S

r f Sf df f S

= + + − + + +

= − − +

p ω α ψ V p V p µ

µ

⊙
' '

'p
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