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Abstract. This paper examines the ability of several different continuous-time one-
and two-factor jump-diffusion models to capture the dynamics of the VIX volatility index
for the period between 1990 and 2010. For the one-factor models we study affine and
non-affine specifications, possibly augmented with jumps. Jumps in one-factor models
occur frequently, but add surprisingly little to the ability of the models to explain the
dynamic of the VIX. We present a stochastic volatility of volatility model that can explain
all the time-series characteristics of the VIX studied in this paper. Extensions demonstrate
that sudden jumps in the VIX are more likely during tranquil periods and the days when
jumps occur coincide with major political or economic events. Using several statistical
and operational metrics we find that non-affine one-factor models outperform their affine
counterparts and modeling the log of the index is superior to modeling the VIX level directly.

JEL: C15, C32, G13, G15
Keywords: VIX, Volatility Indices, Jumps, Stochastic volatility of-volatility

As a measure of volatility implied in traded equity index option prices, volatility indices
have attracted research for almost a decade. The diverse problems being investigated include:
the construction methodology (Carr and Wu, 2006, Jiang and Tian, 2007); their use in
constructing trading strategies (Konstantinidi et al., 2008) and for describing the dynamic
behavior of equity return variance (Jones, 2003, Wu, 2010); and their information content
regarding future volatility (Jiang and Tian, 2005), volatility and jump risk premia (Duan and
Yeh, 2010), and the jump activity of equity returns (Becker et al., 2009).

One of the most important strands of the literature focuses on the data generating process
of the index itself. This is because a realistic model for volatility index dynamics is crucial
for accurate pricing and hedging of volatility derivatives. The liquidity of these contracts
has increased dramatically since the international banking crisis of 2008 and a wide range
of futures, options and swaps is now available for trading. Market participants use these
instruments for diversification, hedging options and pure speculation. To this end, several
pricing models have been considered (e.g. Whaley, 1993, Grunbichler and Longstaff, 1996 or
Detemple and Osakwe, 2000, Psychoyios et al., 2010).
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Empirical evidence regarding the data generating process of volatility indices is, however,
still scarce. To date, the only comparative study of alternative data generating processes is
Dotsis, Psychoyios, and Skiadopoulos (2007) who investigate the performance of several affine
one-factor models using a sample from 1997 to 2004. They find that a Merton-type jump
process outperforms other models for a wide range of different volatility indices. Extensions
of some of the models are also considered in Psychoyios, Dotsis, and Markellos (2010). In
general, there is little disagreement in the literature regarding some important characteristics
of volatility, such as the need for a mean-revering process to account for a long-term equilib-
rium value.1 There is also evidence that volatility jumps constitute a relatively large fraction
of the variability of volatility indices. Psychoyios, Dotsis, and Markellos (2010) argue that
these jumps are an important feature and show that omitting them from the data generating
process can lead to considerable differences in VIX option prices and hedge ratios.

Jumps in volatility may also be important for modeling equity index returns, as for in-
stance in Eraker, Johannes, and Polson (2003). Yet curiously, there is a large discrepancy
between the volatility jump intensities estimated using two-factor models on equity index
time series and one-factor models on volatility index time series. The most important exam-
ple is the difference between the S&P 500 index and its volatility index VIX. Here Eraker,
Johannes, and Polson (2003) estimate about 1.5 volatility jumps per year when based on eq-
uity index data, yet Dotsis, Psychoyios, and Skiadopoulos (2007) estimate between 28 to 100
volatility jumps (depending on the model) using the VIX. Although the estimates are not di-
rectly comparable due to the different sample periods and the different modeling approaches,
their huge differences are still puzzling.

This paper extends the empirical literature on continuous-time dynamics of volatility
indices in several directions. Firstly, we study the VIX over a long-time horizon of more
than 20 years which includes the recent banking and credit crisis. Using a long time series
covering several periods of market distress is essential if we are to uncover all dimensions of
its historical behavior. Moreover, we have observed several different market regimes over the
last two decades, and we shall seek a model that can explain the VIX dynamics during all
types of market circumstances. The recent crisis period is of particular importance, as this
prolonged period of high volatility revealed vital information regarding the extreme behavior
of volatility. Understanding this behavior is particularly important, as it influences numerous
aspects of risk and portfolio management.

Secondly, we depart from standard affine model specifications and study the dependence
of the diffusion part on the level of the index. Non-affine models have recently attracted
much attention, for example Christoffersen, Jacobs, and Mimouni (2010) find that non-affine
specifications outperform affine processes in an equity index option pricing framework. In
our context, the chief motivation to study these models is that a stronger dependence of the
diffusion term on the VIX level might decrease the jump intensity of the models. Extremely
high jump intensities are problematic because one loses the economic reasoning that jumps
cover large, unexpected movements in the time-series. Hence, jump intensities of a very large
order are likely to convey model misspecification. The estimation of non-affine models is,
however, more difficult to handle, as discrete-time transition probabilities or characteristic

1Dotsis, Psychoyios, and Skiadopoulos (2007) point out that this feature is only of second order impor-
tance as the best performing model in their study is a Merton-type jump process without a mean-reversion
component. Modeling volatility with this process over a long-time horizon is however not advisable as in this
model volatility tends to either zero or infinity in the long run.

2
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functions are generally unavailable in closed form. Our approach includes the estimation
of these processes with a Markov-chain-Monte-Carlo sampler using a data augmentation
technique as in Jones (1998). This procedure allows us to study a wide range of processes,
affine and otherwise, within the same econometric framework.

The third and perhaps the most important contribution is the extension of existing volatil-
ity dynamic models to the case of stochastic volatility of volatility (stochastic vol-of-vol here-
after). This feature has, to our knowledge, not been studied for volatility indices before,
but it yields very attractive properties: increasing variability can be modeled as a persistent
vol-of-vol component rather than indirectly via an increased activity of the jump part. Our
results are interesting because this distinction allows for two separate categories of jumps:
transient (unexpected) jumps and jumps due to persistent high volatility regimes. We find
that considering such an extension is of first-order importance and that the estimated variance
process for VIX is extremely erratic and mean-reverts very quickly. We further investigate
whether both jumps and stochastic vol-of-vol are necessary but our results regarding this
issue are mixed.

Fourthly, we provide extensive simulation results that allow us to gage the absolute per-
formance of all models under consideration. We use the concept of predictive p-values to
study a wide range of characteristics of all the processes under consideration. This is crucial,
as previous studies focused mainly on the relative performance of the models. We find that
the stochastic vol-of-vol model generates dynamics that are, of all the models considered,
most closely in line with the observed VIX time series. Finally we provide empirical evidence
using several non-statistical metrics. In particular we perform a scenario analysis exercise
and study the impact of the models on the pricing of simple derivatives.

We proceed as follows: Section I introduces the affine and non-affine one-factor models
used; Section II describes our econometric estimation methodology. Section III provides
details on the data set. In Section IV we provide estimation results for various alternative
one-factor processes. Section V introduces and presents results for the stochastic vol-of-vol
model. We provide risk management and derivatives pricing applications in Section VI and
Section VII concludes.

I Models
Most models proposed for describing volatility or variance dynamics agree on its mean-

reverting nature.2 This feature reflects the belief that, although volatility can temporarily
fluctuate widely, it will never wander away too much from its long-term equilibrium value.
The stronger the deviation from this value the stronger the drift of the process pulls the
process back toward its long-term mean. Constant and zero drift components have been
criticized for ignoring this feature and hence are – at least in the long run – regarded an
unrealistic description of volatility. Mean reverting processes are now an accepted starting
point for volatility and variance modeling.3

2Only few exceptions with non-reverting or zero drift components have been proposed in the literature,
the SABR model of Hagan, Kumar, Lesniewski, and Woodward (2002) and the Hull and White (1987) model
being the most popular.

3This is however contradicted by the empirical findings in Dotsis, Psychoyios, and Skiadopoulos (2007) who
report that a Merton-type return model for volatility outperforms the mean-reverting specifications in their
sample. Yet, the authors do not consider mean reverting log-volatility processes and thus it is not entirely

3
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The diffusion term of a continuous-time process is often chosen so that the model falls into
the class of affine processes. To model the VIX and other volatility indices, Dotsis, Psychoyios,
and Skiadopoulos (2007) rely on the square-root and a Merton-type jump model for volatility
and Psychoyios, Dotsis, and Markellos (2010) also consider an Ornstein-Uhlenbeck process
to model the log of VIX. In this paper, we study several extensions of these models. For
modeling both VIX and its log process, we allow the diffusion function to be proportional to
the process. Variants of these models has been successfully applied in other contexts, such
as option pricing or spot index modeling (see Christoffersen, Jacobs, and Mimouni (2010),
Chernov, Gallant, Ghysels, and Tauchen (2003)). Especially for option pricing applications
researchers often favor square-root specifications, as they retain tractability with analytic
pricing formulae for vanilla options, and as such they are relatively easy to calibrate to the
market prices of these options.

Another feature that has been found essential in volatility modeling is the inclusion of
jumps. Eraker, Johannes, and Polson (2003) (using return data) and Broadie, Chernov, and
Johannes (2007) (using both return and option data) find severe misspecifications when jumps
in volatility are omitted and document the outperformance of variance specifications with
exponential upward jumps. Dotsis, Psychoyios, and Skiadopoulos (2007) report similar results
for volatility indices. Whereas previously-mentioned research is based on the assumption that
jumps occur as i.i.d. random variables, there is also evidence that jumps in VIX occur more
frequently in high volatility regimes (see Psychoyios et al., 2010).

In order to assess the importance of the characteristics outlined, we employ a general
one-factor model in our empirical analysis that accommodates all of the features previously
mentioned. Extensions to these models will be considered in Section V. First we study
models that are nested in the following specification:

dXt = κ (θ −Xt) dt+ σXb
t dWt + Zt dJt (1)

where X either denotes the value of the volatility index or its logarithm, κ is the speed of
mean reversion, θ determines the long term value of the process and σ is a constant in the
diffusion term. The exponent b is set either to one-half or one for the level of the index, and
to zero or one for the log process. Note that if b = 1 in the log process, VIX is bounded from
below by one whereas the lower bound is zero in the other models. As remarked by Chernov,
Gallant, Ghysels, and Tauchen (2003), this is a very mild restriction for yearly volatility.4

In terms of jump distributions we assume that J is a Poisson process with time varying
intensity λ0 +λ1Xt−.5 For the jump sizes we consider two alternatives. Firstly we employ an
exponentially distributed jump size, as this assumption is commonly applied to the variance in
equity markets (and to the jumps in default intensity models). The exponential distribution
has support on the positive real axis, so it allows for upward jumps only, which guarantees
that the process does not jump to a negative value. The distribution is parsimonious with
only one parameter ηJ , representing both the expectation and the volatility of the jump size,
to estimate. We apply this jump size distribution to all models except for the log volatility
model with b = 0, for which we use normally distributed jump sizes with mean µJ and

clear whether their result is driven by the fact that log specification outperforms other models or whether the
result is due to the underperformance of mean-reverting processes.

4To avoid this one could also model not the VIX directly, but its value minus this lower bound.
5We use the standard shorthand notation Xt− for the left limit, hence Xt− ≡ lims↑tXs

4
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standard deviation σJ because the support of this model is not restricted to positive numbers
and the log volatility may become negative.6

II Econometric Methodology
A Estimation of Jump-Diffusion Models

Several estimation techniques for jump-diffusion processes have been proposed in the lit-
erature. In the context of volatility indices, Dotsis, Psychoyios, and Skiadopoulos (2007) use
conditional maximum likelihood methods to estimate the structural parameters of several
alternative processes for six different volatility indices. Psychoyios, Dotsis, and Markellos
(2010) apply the same methodology to the VIX and also include state dependent jump dif-
fusion models. In this paper, we adopt a Bayesian Markov-chain-Monte-Carlo (MCMC)
algorithm because this estimation technique has several advantages over other approaches,
particularly for the models we consider.7 Firstly, it provides estimates not only for structural
parameters, but also for unobservable latent variables such as the jump times and jump sizes.
These latent parameter estimates provide valuable information for testing the model and shed
light on whether key assumptions of the model are reflected in our estimates. Secondly, our
algorithm allows one to handle non-affine models for which closed-form transition densities
or characteristic functions are unavailable.

The center of interest for our analysis is the joint distribution of parameters and latent
variables conditional on the observed data. In Bayesian statistics, this distribution is termed
the posterior density and is given by

p (Θ,Z,J |X ) ∝ p (X |Θ,Z,J ) p (Θ,Z,J) .

where the first density on the right is the likelihood of the observed data conditional on
the model parameters and the second density denotes the prior beliefs about parameters
and latent state variables, not conditional on the data. The vector Θ collects all structural
parameters, and Z, J and X collect all jump sizes, jump times and VIX (or log(VIX))
observations respectively.

Knowing the posterior density we can obtain point estimates and standard errors of struc-
tural parameters, as well as the probability of jump events and jump size estimates for each
day in our sample. Prior distributions are chosen such that they are uninformative, hence
our parameter estimates are driven by the information in the data and not the prior. More
details about these distributions are given in the appendix. But there remain two questions to
address: how to determine the likelihood, because a closed-form density can only be obtained
for some models of the affine class, and how to recover the posterior density.

To obtain a closed-form likelihood we can approximate the evolution of the continuous-
time process for the volatility index by a first-order Euler discretization. Therefore between

6In fact, we have also estimated all models with both normally and exponentially distributed jump size,
so that we may gage the effect of this assumption on the model performance. Since in some models the
normal distribution can lead to negative VIX values and we found only little improvements from this more
general jump size distribution, we report only results for one distribution in each model. All of our qualitative
conclusions are robust with respect to changing this jump size distribution.

7MCMC methods in financial econometrics was pioneered in Jacquier, Polson, and Rossi (1994).
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two time steps the process evolves according to

Xt+1 = Xt +
1/h−1∑

i=0

[
κ (θ −Xt+ih)h+

√
h σXb

t+ih εt+(i+1)h + Zt+(i+1)hJt+(i+1)h
]

where h denotes the discretization step, εt denote standard normal variates and the jump pro-
cess is discretized by assuming that the event Jt+h = 1 occurs with probability h(λ0 +λ1Xt).
This approximation converges (under some regularity conditions) to the true continuous-time
process as h approaches zero. Therefore choosing h to be small should lead to a negligible
discretization bias. But in reality the frequency of the observed data cannot be determined
by the researcher. In our case data are recorded daily and so the discretization bias could be
substantial, depending on the structural parameters of the model.8

A great advantage of the MCMC approach is that it allows one to augment the observed
data with unobserved, high-frequency observations, a technique that has been applied to
continuous-time diffusion and jump-diffusion models in Jones (1998) and Eraker (2001). This
way, we treat data points between two observations as unobserved or missing data. Hence,
even if the data set only includes daily values for the VIX, we can estimate the parameters
of the continuous-time process accurately by choosing h small and augmenting the observed
data. Here there are two practical issues that need addressing. Firstly, decreasing h leads
to increasing computational cost and it also increases the parameters to be estimated sub-
stantially (1/h − 1 times the sample size). And secondly, the inclusion of many data points
makes it more difficult for the algorithm to filter out jump times and jump sizes because
the signaling effect of a large daily observation becomes weaker. Throughout this paper we
use h = 0.25. Jones (2003) reports that, for equity index data, taking h to be of this order
reduces the discretization bias noticeably.

The posterior for our parameter estimation therefore includes the augmentation of X by
unobservable high-frequency observations Xu and yields

p (Θ,Z,J ,Xu |X ) ∝ p (X,Xu |Θ,Z,J ) p (Θ,Z,J) .

Note that although we generate a distribution of each augmented data point, we have no
interest in the density of Xu itself, it is used only to decrease the discretization bias.

The second question, of recovering the posterior density, is dealt with by applying a Gibbs
sampler (Geman and Geman, 1984). This approach achieves the goal of simulating from
the multi-dimensional posterior distribution by iteratively drawing from lower-dimensional,
so-called complete conditional distributions. Repeated simulation of the posterior allows one
to estimate all quantities of interest, such as posterior means and standard deviations for
structural parameters and latent state variables. The Gibbs sampler forms a Markov chain
whose limiting distribution (under mild regularity conditions) is the posterior density. More
precisely, step g in the Markov chain consists of:

8The discretization of the jump part, especially, may lead to a large bias because daily observations allow
no more that one jump per day. According to the results in Dotsis, Psychoyios, and Skiadopoulos (2007)
volatility indices can jump far too frequently for this to be negligible. However, if the jump intensity is much
lower, as in Eraker, Johannes, and Polson (2003), a daily discretization does not introduce any discernible
error.

6
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1. Draw the latent variables: p
(
Xu(g) |Θ(g−1),Z(g−1),J (g−1),X

)

p
(
Z(g) |Xu(g),Θ(g−1),J (g−1),X

)

p
(
J (g) |Θ(g−1),Z(g),Xu(g),X

)

2. Draw structural parameters: p
(
Θ(g) |Xu(g),Z(g),J (g),X

)

The latent state vectors and structural parameters can be further divided into blocks, so that
we only need to draw from one dimensional distributions. Some of the univariate distributions
are of unknown form and we use a Metropolis algorithm for these.9 More details about the
exact distributions and algorithms for our case are given in the appendix.

B Model Specification Tests

In order to test different specifications we employ a simple but powerful test procedure.
Taking a random draw of the vector of structural parameters from the posterior distribu-
tion, we use this to simulate a trajectory of the same sample size as the original VIX time
series. Given this trajectory, we calculate several sample statistics and compare them with
the observed sample statistics obtained from the original VIX time series. Applying this pro-
cedure several thousand times we obtain a distribution for each statistic and for each model
under consideration. Finally, for each statistic and each model, we compute the probability
associated with the value of the statistic given by the observed VIX time series under the
model’s distribution for the statistic. This p-value reveals how likely the observed value of the
statistic is, according to the model. Very high or low p-values convey the model’s inability
to generate the observed data.10

It is common to use higher order moments to discriminate between alternative specifica-
tions. For example, if the estimated models are realistic descriptions of VIX dynamics, then
in repeated simulations the models should create kurtosis levels similar to the observed. We
shall choose a wide range of statistics that we deem important for modeling volatility indices,
including:11

– The descriptive statistics in Table 1 except for the unconditional mean (because with
a mean-reverting process the mean only indicates whether the start value is below or
above the last simulated value and this is of no interest). That is we opt for standard
deviation (stadev), skewness (skew) and kurtosis (kurt) and the minimum (min) and
maximum (max) of the process. Note that these statistics indicate whether a model can
capture the standardized moments up to order four, as well as the extreme movements
of the VIX.

– Statistics linked to jump behavior of the process. We use the highest positive and
negative jump in the index (minjump and maxjump), the average over the 10 largest
positive jumps (avgmax10) and the average over the 10 largest negative jumps (avg-
min10). These statistics shed light on whether the model can replicate the observed
outliers.

– In order to investigate the clustering of the outliers we use the month (20 trading days)
9A standard reference including a wide range of Metropolis algorithms is Robert and Casella (2004).
10For more details on this type of model specification testing procedure we refer to Rubin (1984), Meng

(1994), Gelman, Meng, and Stern (1996) and Bayarri and Berger (2000).
11Very similar statistics have been used recently for equity index dynamics in Kaeck and Alexander (2010).

7
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with the highest sum of absolute changes in the process (absmax20). Likewise we report
the statistic for the month with the least absolute changes (absmin20). Taken together
these two statistics reflect our belief that the model should be able to reproduce periods
of low activity and periods of high uncertainty in the level of the VIX.

– Finally, we report various percentiles of the estimated unconditional distribution of daily
changes in the VIX. The percentiles are denoted by percNUM where NUM indicates
the percentage level, and they indicate whether the model can replicate the observed
unconditional density.

To simulate the continuous-time processes we use the same time-discretization as we have
employed for the estimation of the processes. Furthermore, we start each simulation at the
long-term mean value of the VIX and use 50,000 trajectories to calculate the p-values.

This test procedure has several advantages over simple in-sample fit statistics (most of
which do not, in any case, apply to the Bayesian framework we use). Firstly, it allows us to
detect exactly which characteristics of the VIX a model will struggle to reproduce. Secondly,
it allows us to compare the models in both a relative and an absolute sense. That is, as well as
comparing the performance of competing models, our procedure also indicates whether each
model provides a good or bad description of the observed VIX dynamics. Thirdly, it takes
the parameter uncertainty into account because it draws the structural parameters randomly
from the posterior density.

III Data
The VIX volatility index is constructed from all standard European S&P 500 index options

for the two delivery dates straddeling 30 days to maturity. These are used to infer a constant
30-days-to-maturity volatility estimate. CBOE publishes this index on a daily basis and
makes it publicly available on their website (www.cboe.com). The construction methodology
is based on the results in Britten-Jones and Neuberger (2000) and hence it allows one to regard
VIX an estimate of volatility that is model free under some fairly unrestrictive assumptions
on the equity index data generation process. We use daily time series data from January
1990 until May 2010 for the VIX index, which is the longest time series available at the time
of writing.

VIX and its logarithm are depicted in Figure 1. As expected, all high volatility periods
coincide with either major political events or financial market crises. The first such period in
our sample corresponds to the outbreak of the first Gulf War in August 1990, when the VIX
exceeded 30% for several months. Following this, markets stayed calm for a couple of years
until July 1997. During this tranquil volatility regime the VIX only temporarily exceeded
20%. With the Asian crisis in 1997 we entered a sustained period of high uncertainty in equity
markets. Several financial and political events contributed to this: the Long Term Capital
Management bailout in 1998, the bursting of the Dot-Com bubble in 2000 and the 9/11 terror
attacks leading to the second Gulf War in 2001. In 2003 VIX levels begin a long downward
trend as equity markets entered another tranquil period which prevailed until 2007. Then,
after the first signs of a looming economic crisis surfaced, VIX rose again. Following the
Lehman Brothers collapse in September 2008 it appeared to jump up, to an all-time high of
over 80%. Before this such high levels of implied volatility had only been observed during
the global equity market crash of 1987, which was before the VIX existed. Equity markets

8
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Figure 1: VIX Index. This figure depicts both VIX and its log, as well changes in their values.
The sample period for the VIX from January 1990 until end of May 2010.
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Table 1: Descriptive Statistics. This table reports sample statistics for levels and first differences
of the VIX. The sample period for the VIX is from January 1990 until May 2010.

mean std dev skewness kurtosis min max
Level 20.32 9.31 80.86
First Difference 0.003 1.512 0.427 21.819 -17.36 16.54

returned to around 20% volatility in 2009, but then with the Greek crisis in May 2010, at
the end of the sample, the VIX again appeared to jump up, to around 40%.

Table 1 reports descriptive statistics for the VIX. From a modeling perspective the most
interesting and challenging characteristic are some huge jumps in the index, indicated by
the very large min and max values of the first difference. Movements of about 15% per day
(about 10 standard deviations!) will pose a challenge to any model trying to describe the
evolution of the indices. Interestingly downward jumps can be of an even higher magnitude
and we will discuss this issue further below.

IV Estimation Results
A Jump-Diffusion Models on the VIX Level

First we focus on the jump-diffusion models for the VIX level with b = 0.5, which are
reported in the left section of Table 2. Starting with the pure diffusion model in the first

9
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Table 2: Parameter Estimates (Level models). This table reports the estimates for the struc-
tural parameters. The posterior mean is reported as the point estimate, posterior standard deviations and
5%-95% posterior intervals are reported in brackets.

Models on VIX with b = 0.5 Models on VIX with b = 1

κ 0.016 0.037 0.051 0.014 0.029 0.039
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

[0.011, 0.02] [0.033, 0.041] [0.047, 0.055] [0.01, 0.019] [0.024, 0.034] [0.034, 0.044]
θ 20.496 13.747 12.311 20.510 13.294 13.033

(1.187) (0.567) (0.473) (1.357) (0.561) (0.427)
[18.667, 22.544] [12.806, 14.665] [11.525, 13.076] [18.566, 22.951] [12.358, 14.207] [12.337, 13.739]

σ 0.289 0.229 0.214 0.062 0.050 0.048
(0.004) (0.003) (0.003) (0.001) (0.001) (0.001)

[0.283, 0.296] [0.223, 0.234] [0.209, 0.219] [0.06, 0.063] [0.049, 0.051] [0.047, 0.049]
λ0 0.107 0.082

(0.016) (0.012)
[0.082, 0.134] [0.063, 0.102]

λ1 0.013 0.007
(0.002) (0.001)

[0.01, 0.016] [0.005, 0.008]
ηJ 2.376 1.584 2.708 2.299

(0.185) (0.102) (0.21) (0.161)
[2.104, 2.706] [1.428, 1.759] [2.399, 3.074] [2.057, 2.584]

column, we estimate a speed of mean reversion κ of 0.016 which corresponds to a characteristic
time to mean revert of 1/0.016 = 63 days. One minus this parameter is approximately the
first-order autocorrelation of the time series, hence our results imply that volatility is highly
persistent. The long-term volatility value θ is about 20.5% which is close to the unconditional
mean of the process in Table 1. Our parameter estimate for σ is 0.289.12

Several interesting features arise when considering the exponential jump models in columns
2, where λ1 = 0 so that jump intensities are independent of the level of the VIX, and column
3 where λ0 = 0 but jump intensities depend on of the level of the VIX. We have also estimated
all models with λ0 and λ1 being simultaneously different from zero.13 Firstly, the inclusion
of jumps increases the speed of mean reversion considerably, to 0.037 when λ1 = 0 and 0.051
when λ0 = 0. A possible explanation is that the drift of the process tries to compensate for
omitted downward jumps, so that when volatility is exceptionally high the process can create
larger downward moves with an increased κ estimate. Furthermore, in the jump models the
estimates for the second drift parameter θ drop to about 12-14%, a result that is expected
because θ carries a different interpretation once jumps are included. To obtain the long-term
volatility we have to adjust θ by the effect of jumps and our estimation results imply long-
term volatility levels of approximately 21%, similar to the pure diffusion model. As expected
the parameter σ decreases in all jump models since part of the variation in the VIX is now

12Note that this model was previously studied in Dotsis, Psychoyios, and Skiadopoulos (2007) but these
authors used VIX data from the generally volatile period from October 1997 to March 2004 so our results are
not directly comparable. Not surprisingly, the parameter estimates in Dotsis, Psychoyios, and Skiadopoulos
(2007) imply a more rapidly moving processes than ours: they estimate a (yearly) speed of mean reversion of
9.02 (whereas our yearly equivalent is 4.03) and a long-term volatility level of 24.54%.

13These results are omitted for expositional clarity, but they are available from the authors upon request.
The parameter estimates for these models reveal that jump probabilities are mainly driven by the state-
dependent jump part as λ0 is close to zero. Therefore, the evidence appears to point toward state-dependent
jumps. We return to this observation later on.
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explained by the jump component.
When jump probabilities are assumed to be independent of the VIX level, a jump occurs

with a likelihood of 0.107 per day. A parameter of this magnitude implies about 27 jumps per
year, hence such events may be far more frequent than for many other financial variables such
as stock prices or interest rates. An average-sized jump is 2.38 VIX points. Jump occurrence
in the models with state-dependent jumps is higher, with average jump probabilities of about
26%.14 As we estimate more jumps in this case, the average jump size decreases to only 1.58
VIX points.

We now turn to the non-affine models with b = 1 in the right half of Table 2. There
are several interesting results. Firstly the speed of mean reversion κ is smaller than in the
square-root models. This possibly stems from the fact that the diffusion term, through its
stronger dependence on the level of the VIX during high-volatility regimes, can create larger
downward jumps and this requires a less rapid mean-reverting process. The long-term level of
the VIX is, as in the square-root model, consistent with its unconditional mean. The diffusion
parameter σ, however, is not comparable with previously studied models and its estimates
range from 0.048 to 0.062. State-independent exponentially distributed jumps occur with
a likelihood of 0.082 per day and state-dependent jumps are again more likely than state-
independent jumps, but they occur only about half as often as in the square-root model class.
This has an effect on estimated jump-sizes, where we find that jumps in the non-affine models
are more rare events, but their impact is greater and all jump size estimates are larger than in
the square-root models. Overall, the jump intensities in non-affine models are still relatively
high.

Table 3 provides results from our simulation experiments. These show that the square-
root diffusion model is fundamentally incapable of producing realistic data as it fails to
generate statistics similar to the observed values for almost every statistic we use. Some of
the results are improved when jumps are added, for example using state-independent jumps
the standard deviation and the kurtosis of the data yield more realistic values. Nevertheless,
overall the square-root model with or without jumps does a very poor job of explaining the
characteristics of the VIX. The results for the non-affine specification are more encouraging.
Whereas several statistics could not even be produced once in our 50,000 simulations for
the square-root diffusion, the non-affine specification does a far better job of matching the
observed characteristics of the VIX. However, in absolute terms the non-affine models, with
or without jumps, are still severely misspecified. Again, there appears to be little benefit from
introducing jumps into the models as the models especially fail to reproduce the statistics
that are linked to the jump behavior of the VIX.

B Jump-Diffusion Models on the Log of the VIX Level

Structural parameter estimates for the log-VIX models are reported in Table 4. We
consider the models with b = 0 first, shown in the left side of the table. The mean reversion
speed κ is more consistent across models with and without jumps, taking values between
0.014 and 0.017. The long-term level θ for the log process is estimated to be 2.951 in the pure
diffusion model, a value that implies a long-term volatility level of about 19%. The value for
this parameter is again dependent on the estimated jump parameters and hence it drops in
the jump models. The implied long-term volatility level however hardly changes, for example

14This estimate is based on an average VIX level of about 20%.
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Table 3: Simulation Results (Level models). This table reports the p-values for all the statistics
described in Section II. The closer these values are to 1 or 0 the greater the degree of model misspecification.

Data VIX with b = 0.5 VIX with b = 1

Jump Distribution no exp no exp
Jump Type λ0 λ1 λ0 λ1

stadev 1.512 0.9988 0.6276 0.6248 0.8644 0.4395 0.1993
skew 0.427 1.0000 0.0000 0.0000 0.9991 0.0000 0.0000
kurt 21.819 1.0000 0.8474 0.9985 0.9972 0.6537 0.9048
avgmax10 11.556 1.0000 0.4029 0.9587 0.9916 0.1721 0.2386
avgmin10 -10.663 0.0000 0.0000 0.0000 0.0153 0.0000 0.0000
perc1 -3.673 0.0026 0.0000 0.0000 0.3545 0.0045 0.1162
perc5 -2.004 0.9294 0.1149 0.3068 0.7652 0.4198 0.6821
perc95 2.160 0.6397 0.5043 0.0050 0.5909 0.5245 0.1058
perc99 4.642 1.0000 0.0051 0.0108 0.9687 0.0093 0.0008
absmax20 149.620 1.0000 1.0000 1.0000 0.9922 1.0000 0.9999
absmin20 3.810 0.0000 0.0000 0.0000 0.0016 0.0009 0.0018
maxjump 16.540 1.0000 0.5571 0.9122 0.9884 0.3621 0.4735
minjump -17.360 0.0000 0.0000 0.0000 0.0110 0.0000 0.0001
max 80.860 0.9984 1.0000 0.9998 0.8521 0.9968 0.9460
min 9.310 0.9998 0.9514 0.9592 0.9906 0.7969 0.7724

our results in the state-independent and exponential jump model implies a similar long-term
volatility level of 19.9%. Estimates for σ vary across models, between 0.04 and 0.06. The
jump likelihood in the log volatility model is again very high, with daily jump probabilities
of 20% or more, which implies more than 50 jumps per year. The average jump probability
for the time-varying jump intensity model is of larger magnitude. The normally distributed
jump sizes have mean 0.03 with a standard deviation of around 0.08. Parameter estimates
for the log model with additional dependence of the diffusion term on the level of the VIX
are reported in the right half of Table 4. The only noteworthy feature of our estimates here
is that jump sizes are higher, with an estimated mean of about 0.08 for both models.

Simulation results for the log models are presented in Table 5. Models with b = 1 perform
quite well in producing samples with similar characteristics as the observed VIX time series.
The only characteristic that can be rejected at a 5% significance level is the skewness. The
observed statistic is 0.427, but the simulations imply a smaller statistic in 97.96% of the
cases. Apart from this, the pure diffusion model produces realistic samples. This is true in
particular of the large jumps in the VIX. For example the large negative and positive jumps
of more than -17 and 16 VIX points respectively, creates no obstacle for the model. Including
jumps into the processes can improve some of the statistics we use, but overall the inclusion
of jumps is, at least as far as these test statistics are concerned, of no benefit. Interestingly,
the jump models still struggle to capture the observed skewness of the VIX, but now the
models tend to underestimate this statistic as the inclusion of jumps decreases the skewness
in the models. Using b = 0 on the other hand, leads to significant misspecification.
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Table 4: Paramater Estimates (Log models). This table reports the estimates for the structural
parameters. The posterior mean is reported as the point estimate, posterior standard deviations and 5%-95%
posterior intervals are reported in brackets.

Models on log(VIX) with b = 0 Models on log(VIX) with b = 1

κ 0.014 0.016 0.017 0.014 0.019 0.022
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

[0.01, 0.018] [0.012, 0.019] [0.013, 0.02] [0.01, 0.018] [0.015, 0.023] [0.018, 0.026]
θ 2.951 2.562 2.534 2.955 2.098 2.152

(0.064) (0.076) (0.077) (0.063) (0.115) (0.096)
[2.848, 3.055] [2.431, 2.673] [2.403, 2.649] [2.858, 3.064] [1.898, 2.274] [1.988, 2.298]

σ 0.060 0.043 0.040 0.020 0.016 0.016
(0.001) (0.001) (0.002) (0) (0) (0)

[0.059, 0.062] [0.041, 0.045] [0.037, 0.044] [0.02, 0.021] [0.016, 0.017] [0.015, 0.016]
λ0 0.229 0.215

(0.044) (0.045)
[0.164, 0.303] [0.154, 0.296]

λ1 0.111 0.084
(0.027) (0.017)

[0.069, 0.156] [0.06, 0.114]
µJ 0.027 0.022

(0.005) (0.005)
[0.019, 0.036] [0.015, 0.031]

σJ 0.082 0.074
(0.006) (0.007)

[0.074, 0.092] [0.065, 0.085]
ηJ 0.078 0.074

(0.006) (0.006)
[0.068, 0.088] [0.065, 0.084]

V Stochastic Volatility of Volatility
Having shown that the log-VIX models perform better than models for the VIX level, we

now extend the log volatility specification to the following stochastic volatility-of-volatility
(SVV) model:

d log(VIXt) = κ [θ − log(VIXt)] dt+
√
VtdWt + ZtdJt

dVt = κv(θv − Vt)dt+ σv
√
VtdW

v
t

where the correlation % between the two Brownian motions is assumed constant, but possibly
non-zero. Considering a non-zero correlation case is essential in this set-up, as previous
evidence points toward a strong dependence between the VIX and its volatility level. In
addition to a stochastically moving volatility, we allow for normally distributed jumps as
before. Estimation of this model is by MCMC, as before, and we describe the exact algorithm
in the appendix.

There are several motivations for considering this model. Firstly, the empirical results in
the previous section motivate a more detailed study of the diffusion part of the process. Con-
sidering a stochastic volatility component is a natural extension for one-dimensional models
and this approach has been successfully applied to other financial variables. Secondly, in
the one-dimensional SDEs studied so far the jump probability is extremely high, so jumps
cannot be interpreted as rare and extreme events, which is the main economic motivation for
incorporating jumps into a diffusion model. The diffusion part is designed to create normal
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Table 5: Simulation Results (Log models). This table reports the p-values for all the statistics
described in Section II.

Data log(VIX) with b = 0 log(VIX) with b = 1

Jump Distribution no normal no exp
Jump Type λ0 λ1 λ0 λ1

stadev 1.512 0.9250 0.9455 0.8545 0.6069 0.1484 0.0895
skew 0.427 0.9997 0.0110 0.0257 0.9796 0.0001 0.0004
kurt 21.819 0.9999 0.9880 0.9764 0.9426 0.5219 0.4089
avgmax10 11.556 0.9996 0.9804 0.9450 0.8881 0.1114 0.0627
avgmin10 -10.663 0.0009 0.0002 0.0048 0.1601 0.0747 0.2679
perc1 -3.673 0.2352 0.0664 0.2159 0.6917 0.6236 0.8047
perc5 -2.004 0.6930 0.2017 0.3245 0.7873 0.7829 0.8531
perc95 2.160 0.6189 0.7076 0.5310 0.4228 0.0554 0.0444
perc99 4.642 0.9907 0.8342 0.7257 0.7814 0.0165 0.0133
absmax20 149.620 0.9997 0.9995 0.9951 0.8903 0.8846 0.6811
absmin20 3.810 0.0367 0.0545 0.0893 0.0906 0.1295 0.2282
maxjump 16.540 0.9985 0.9309 0.8881 0.8572 0.1603 0.0953
minjump -17.360 0.0010 0.0016 0.0096 0.1253 0.0633 0.2028
max 80.860 0.9452 0.9635 0.8961 0.6763 0.6506 0.4037
min 9.310 0.9929 0.9770 0.9742 0.9466 0.9315 0.9539

Table 6: Parameter Estimates (Log vol-of-vol models). This table reports the estimates for
the structural parameters. The posterior mean is reported as the point estimate, posterior standard deviations
are given in parenthesis.

κ θ κv θv×100 σv×10 % λ0 µJ σJ

mean 0.011 3.073 0.110 0.349 0.183 0.653
standard dev (0.002) (0.086) (0.013) (0.016) (0.01) (0.038)

mean 0.012 2.983 0.097 0.330 0.162 0.659 0.009 0.136 0.103
standard dev (0.002) (0.072) (0.015) (0.035) (0.016) (0.039) (0.004) (0.054) (0.027)

movements, whereas jumps contribute occasional shocks that are – because of their magni-
tude – unlikely to come from a pure diffusion process.15 If jumps were to occur very frequently
these models may be poorly specified, or at least not compatible with their usual interpreta-
tion. A third motivation for considering the SVV specification is to capture the clustering in
volatility of index changes that is evident from Figure 1. As opposed to a transient shock,
this feature is commonly modeled with a stochastic volatility component.

Table 6 reports the estimated parameters of the SVV model, first without jumps and then
with normally distributed jumps. The speed of mean reversion parameter κ is lower than in
any previously reported model, with an estimate of 0.011 and 0.012. As mentioned above,
κ is likely to be distorted upward when a model cannot capture large negative outliers, so
this result indicates that SVV models are more consistent with large downward moves than
models without stochastic volatility. Furthermore, both models imply a long-term volatility

15Eraker, Johannes, and Polson (2003) argue that this justifies a more restrictive prior on the jump likelihood
parameters.
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Figure 2: Estimated Variance Paths. This figure depicts the estimated variance path
(multiplied by 100) for the log(VIX) for the diffusion case.
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Figure 3: Estimated Jumps. This figure depicts the average jump distribution for the model
with normally distributed jumps.
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level, of between 21% and 22%. The correlation is, as expected, positive with high (and again
virtually identical) estimates of 0.653 and 0.659.

The characteristics of the variance equation are very interesting, because this process
differs somewhat from variance processes estimated from other financial variables. The speed
of mean-reversion in the variance equation κv is very high, at 0.11 for the diffusion model.
This implies a very rapidly reverting process with an estimated value 10 times larger than for
the VIX itself. Including a further jump component decreases this parameter only marginally,
to a value of 0.097. The mean-reversion level for the variance θv is consistent with the estimate
from the one-dimensional diffusion model. The estimate of 0.06 in the log volatility diffusion
model reported in Table 4 is approximately equal to the average volatility level implied by
our estimate for θv. In order to visualize the variance V over the sample period, we provide
the estimated sample path of this latent variable in Figure 2.

We have seen that including (state-independent) jumps into the SVV model changes pa-
rameter estimates only marginally, and this is probably because jumps occur only every six
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Table 7: Simulation Results (Stochastic vol-of-vol models).

Stochastic-vol-of-vol Models on log(VIX)

Data p-values

Jump Distribution no normal

stadev 1.512 0.260 0.245
skew 0.427 0.713 0.338
kurt 21.819 0.829 0.791
avgmax10 11.556 0.607 0.505
avgmin10 -10.663 0.382 0.342
perc1 -3.673 0.924 0.911
perc5 -2.004 0.922 0.913
perc95 2.160 0.129 0.133
perc99 4.642 0.353 0.289
absmax20 149.620 0.728 0.748
absmin20 3.810 0.294 0.308
maxjump 16.540 0.563 0.457
minjump -17.360 0.310 0.275
max 80.860 0.369 0.381
min 9.310 0.777 0.762

months, on average. Now, as desired, jump events concentrate only on exceptional outliers
that cannot be explained with a more persistent stochastic vol-of-vol process. This is also re-
flected in the estimated jump sizes as, for all specifications, we obtain higher estimated jump
sizes with a mean of 0.136 and a standard deviation of 0.103. This adds further evidence that
jumps are now covering only the more extreme events. Also negative jumps are of no major
importance, as depicted by the mean jump sizes depicted in Figure 3. Although negative
jumps are clearly a feature of volatility indices, their occurrence is rather a correction of
previous large positive jumps. Indeed our results indicate no negative jump of significant size
at all, over the entire sample period.

These results pose an interesting question: Are jumps necessary at all once we account for
stochastic vol-of-vol? To answer this consider the 5% percentile of the posterior distribution
of λ0, which is 0.003. This provides some statistical evidence in favor of including jumps,
although they occur very infrequently. However, there is not evidence from our simulation
results in Table 7 that including jumps improves the model. With or without jumps, the SVV
model is capable of reproducing all the characteristics of the VIX that we consider. For both
models it is the lower percentiles that are most difficult to reproduce, but still, the p-values
for all models are between 0.05 and 0.95 so neither model can be rejected.

The rare occurrence of jumps is now similar to those found in the equity index market
(Eraker et al., 2003). However, there is an important difference, because including jumps
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seems less important for volatility than it is for the index itself. The variance process of the
VIX is much more quickly mean reverting and rapidly moving than the variance process of
the S&P 500 index, omitting jumps from the specification has a lesser impact than it would
have when variance is more persistent.

It is instructive to investigate the jumps in log-VIX events depicted in Figure 3. In-
terestingly, the biggest estimated jump in the sample period are not obtained during the
highly turbulent period of the banking crisis. This is because most of the movements are
now captured by the stochastic vol-of-vol component. Instead there is an increased intensity
of smaller jumps, so the vol-of-vol could adjust to capture even large outliers in the data. In
other words, the clustering of large movements was best captured with a stochastic vol-of-vol
component. One of the largest jumps in our sample was in November 1991, when the VIX
jumped from less than 14 to over 21 in one day. This jump was preceded by several tranquil
months with little movements in the VIX. The same applies to the jumps in February 1993
and in February 1994. Another large jump is estimated in February 2007. Prior to this,
volatility was bounded between about 10 and 13 percent for many months. Then a slump
in the Chinese stock market created a knock-on effect for Europe, Asia and North America
with substantial losses for all major equity indices on 27 February. This left financial markets
in doubt over economic prospects, and the VIX jumped up by more than 7 points. This
jump is difficult to create with a stochastic vol-of-vol component because its arrival came as
a total surprise and thus required a substantial upward jump. Based on these observations
we conclude that volatility jumps are required, but only for surprising events triggered by
totally unexpected political or financial news. Note also, that the jumps estimated by the
model occur during periods of low VIX levels thus there is no evidence in this model that
suggests that jumps are more likely when VIX levels are high.

VI Applications to Risk Management and Derivative Pricing
So far we have judged alternative models for the VIX purely on econometric grounds, so in

this section we provide two applications to standard risk management and derivative pricing.
We begin by analyzing differences between the scenarios that are generated by alternative
models and then we consider some implications for pricing derivatives on the VIX index.

A Scenario Analysis

A standard task in risk management is to explore the effect of potential shocks in economic
variables. The evolution of VIX can affect bank portfolios for many reasons, either indirectly
as a measure of volatility, or more directly as the underlying of several derivative products
such as futures, swaps and options. In this section, we take the most drastic scenario observed
in our sample period and investigate the probability assigned to this scenario under different
models for the VIX. To this end, we consider the evolution of VIX during the outburst of the
banking crisis in autumn 2008, when VIX increased from 21.99 on September 2, to reach its
all-time high of 80.06 only few weeks later on October 27. Preceding this peak, the index was
increasing almost continually from the beginning of September, with only minor and very
temporary corrections.

A possible strategy is to re-estimate the models using data until September 2008, as this
would allow us to access the predictability of such a scenario. However, it is very unlikely that

17



ICMA Centre Discussion Papers in Finance DP2010-11

Figure 4: Simulated VIX 2008. This figure depicts the true evolution of the VIX during the
beginning of the banking crisis in 2008. In addition, we plot 95%, 99% and 99.9% percentiles.
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a pure statistical model based on our data could have predicted this scenario because since its
inception the most extreme value of the VIX before October 2008 was 45.74, far away from
the highs that were witnessed during the banking crisis. This is a deficiency of the data set,
as even higher volatility levels were recorded during the global market crash of 1987, when
the old volatility index VXO reached levels of more than 100%. For any risk management
application it would be therefore crucial to take this pre-sample data into account, or to use
parameter estimates from shocked data.

The question we address here is not the predictability of the banking crisis but whether
the models, after observing such an extreme event (and incorporating it into the estimated
parameters) are capable of generating such scenario, or whether they still consider it impossi-
ble. Put differently, we ask how plausible is such a scenario under the different models, with
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parameters estimated after the event. For each model, we use the VIX value on September
2, 2008 (before the crisis) as our starting value and simulate the process until October 27,
2008 according to the parameter estimates presented in the two previous sections.16 Then,
after simulating 100,000 paths, we gage the likely range of values produced by the models
by calculating percentiles for the two-month period. In each simulation the parameter values
are drawn randomly from the posterior distribution, so that the analysis takes account of the
uncertainty in estimated parameters.

Figure 4 illustrates the results of this exercise for six of the models. For the one-factor
models we consider the most general specifications, with time-varying jump probabilities.
Other assumptions on the jump part of the processes lead to virtually identical conclusions
and so we omit these for expositional clarity. In both affine and non-affine models of the VIX
itself the index ends up far beyond the 99.9%-percentile. Log models fare better but still
assign only a tiny probability to the likelihood of the observed path. The best among the
one-factor models is the log model with additional dependence of the diffusion coefficient on
the VIX level. This finding confirms our previous evidence that such a modeling approach
yields the most realistic results, among all the one-factor models considered. SVV models also
do a good job, as for both processes the actual time series ends between the 99% and 99.9%
percentiles. Indeed, given that our sample consists of almost 150 such two months periods, we
would hope that such a one-off scenario is predicted in less than 1% of the cases. We conclude
that only the one-factor log model with b = 1 and the stochastic volatility-of-volatility models
provide accurate assessments of the likelihood of the banking crisis scenario.

B Implications for Derivatives Pricing

To study the effect of incorporating stochastic volatility in the VIX process on standard
derivatives, such as VIX futures and variance swaps, we compare the empirically observed
term structures for VIX futures with the term structures generated by the different models.
We focus on three different models: both log and level non-affine one-factor models and the
SVV model augmented with jumps.17 The modeling of VIX futures requires parameters from
the risk-neutral probability measure rather than real-world parameter estimates, so we follow
Dotsis, Psychoyios, and Skiadopoulos (2007) and assume that the market prices of diffusive
and jump risk are zero.18

The prices of VIX futures with maturity between one and six months are downloaded
from the CBOE website and are available from March 2004 until the end of the sample. We
assign a term structure on a given day to one of three volatility buckets (15%, 25% and 45%)
if the VIX was within ± 1% of these target values. This procedure provides 189 and 107 term
structures for low and medium volatility levels respectively and 18 term structures for the
45% VIX level. The collected data illustrate the different shapes of volatility term structures
that are empirically observable. We then calculate the term structure for the three alternative
models using Monte-Carlo simulation. For the one-factor models the term-structure is fixed

16In addition, for the SVV models we use the estimated variance on September 2 as a starting value.
17Again, we do this to focus on the main results but we have performed the same exercise for all the models

considered in this paper.
18Alternatively, we could shift some of the parameters by an additive or multiplicative (yet arbitrary)

constant as in Johannes (2004), but since our derivatives pricing exercise is mainly relative in nature and
because the effect of such a shift on the different models is difficult to gage, we prefer to set risk premia to
zero.
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Figure 5: VIX Futures Term Structure. This figure depicts the observed term structures
between 2006 and 2010. In black we depict the term structure implied by the models and in gray the
empirically observed term structures between March 2004 and May 2010.
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using the parameter estimates, however for the SVV models the term structures also depend
on the spot level of the VIX variance Vt at initiation of the contract. In our simulation we
set this value to the mean of the estimated variance on the days in the sample where VIX is
± 1% of the target VIX value.

Figure 5 plots the observed VIX futures term structures in gray and the theoretical term
structure from each model is superimposed in black. For the one-factor models, the theoretical
term structure remains with the empirically observed data for low and medium volatility
levels, but for high volatility levels both models imply a rapidly declining term structure
which is incompatible with the futures prices, especially long-term futures prices. Most of the
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Table 8: VIX Option Pricing. This table reports call option prices for the different models. All
option prices are calculated by Monte-Carlo simulation.

Moneyness: 1.2 Moneyness: 1.5
VIX level 15% 25% 45% 15% 25% 45%

Days to Maturity: 30

Level model, b = 0.5, Jump Dist: exp 1.72 0.42 0.03 0.52 0.05 0.00
Log model, b = 0, Jump Dist: normal 0.98 0.73 0.47 0.23 0.15 0.08
Level model, b = 1, Jump Dist: exp 1.67 0.76 0.28 0.60 0.17 0.03
Log model, b = 1, Jump Dist: exp 1.40 1.35 1.43 0.51 0.50 0.55
Log model, SVV, Jump Dist: no 1.19 1.12 1.24 0.41 0.37 0.44
Log model, SVV, Jump Dist: normal 1.21 1.18 1.26 0.41 0.40 0.43

observed term structures at this volatility level decrease more slowly than the models imply.
Only for the stochastic vol-of-vol model all theoretical prices remain within the empirically
observed range. However, overall the term structures observed in the market point toward
a weakness of all the models we consider. Since the VIX futures price converges at long
maturities toward the estimated long-term VIX level, there is little variation in the shapes
produced by the models. A possible remedy for this is to consider a further stochastic factor
that drives the long-term volatility level. This way, the shape of the term structure will also
depend on the level and the dynamics of this second factor. If this factor is positively related
to the VIX level itself, it is likely to generate more realistic term structures.

The impact of the data generating process on VIX option prices is investigated in Table
8. We use standard European call options on the VIX with 30 days to maturity. Since the
difference between option pricing models is most visible in out-of-the-money option prices
we study options with two different moneyness (defined as strike divided by spot value)
categories, 120% and 150%.19 These results are in line with our previous findings. The
one-factor log model with b = 1 yields prices relatively close to the prices calculated for the
SVV specifications. However, the difference between these and other one-factor models can
be substantial. For example the affine level model assigns almost no value to far out-of-
the-money (OTM) options, whereas the prices in the SVV models are still considerable. It
is interesting that prices for OTM calls in the SVV models are relatively insensitive to the
current VIX level. This highlights the important effect that the spot variance may have on
VIX option prices. When the VIX is at low levels, its variance tends to be low as well. But in
high volatility regimes, although the mean-reversion pulls the process back toward a smaller
value, the high variance of the process leads to option prices that are comparable to those at
lower VIX levels. This effect is also visible for the one-factor log model with b = 1, but in
other one-factor models the option prices are far too low because drift term dominates even
in high volatility regimes.

19Again, we have performed the same exercise for other maturities and moneyness levels, but for brevity
concentrate on the most important short term out-of-the money call options here.
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VII Conclusion
This paper has studied alternative jump-diffusion models for the VIX volatility index,

considering two broad modeling approaches, i.e. to model the VIX directly or its log value.
Our models include one-factor affine and non-affine diffusion and jump-diffusion models, and
two-factor stochastic volatility models. We evaluate these models using probability values
for a wide range of statistics and assess their performance for some risk management and
derivatives pricing applications.

As in Dotsis, Psychoyios, and Skiadopoulos (2007) we find that modeling the VIX log
returns (equivalently, the log value of VIX) is superior to modeling its level. Beyond this we
present a variety of novel contributions to the literature. First, we find that non-affine models,
in which the diffusion term is proportional to the VIX level or log respectively, are far superior
to their affine counterparts. The main reason for this is that non-affine models accommodate
a more rapidly moving VIX during high volatility regimes. Not only are affine models unable
to reproduce the observed characteristics of the VIX, they also assign too great an intensity
to the jump processes. This is problematic, since the intuition of introducing jumps is that
they cover rare and extreme events. There is also strong statistical evidence in favor of time-
varying jump intensities in these models. However since one-factor models are misspecified,
it is likely that results for these models are distorted. Our simulation experiments show that
the absolute benefit from the addition of jumps to one-factor models can be fairly small.

The only one-factor model that can explain a multitude of facets of the VIX is the non-
affine log model. A yet more promising approach to capturing the extreme behavior of the
VIX is the inclusion of a stochastic, mean-reverting variance process. This model passes
all the specification hurdles and yields superior results in our scenario analysis. It is also
appealing because jumps are rare and extreme events, which only occur on days that can be
linked to major political or financial news. For modeling the VIX futures term structure a
stochastic mean reversion factor appears to be important. Finally we show that VIX option
prices that are generated by different models can vary significantly. This emphasizes the
importance of our research, as the model risk involved in choosing a process for the VIX can
be substantial.
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Appendix
This appendix provides distributions and algorithms used in the MCMC estimation. Gen-

eral references for Bayesian statistics and MCMC methods are Geweke (2005) and Robert
and Casella (2004) to which we refer for details on the Gibbs sampler and Metropolis steps.

A Complete Conditionals and Prior Information - One Factor Models

We first describe the draws of the augmented data set. We index the observations of
the VIX (or its logarithm) from 0 to T with a step size of one. This way, real observations
have integer-valued indices. Other indices denote unobserved data. In this notation, Xu

consists of all Xih with non-integer ih, i = 0, . . . , T/h, and X collects remaining Xih (the
true observations). In order to update Xih for non-integer ih, its posterior is given (up to
proportionality) by

p
(
Xih |X(i−1)h,Z,J ,Θ

)
× p

(
X(i+1)h |Xih,Z,J ,Θ

)

where p (·) is a general notation for a probability density. Since the product of two normal
densities is non-standard, we use a Metropolis step. We propose a value from the first of the
two distributions and accept it based on the likelihood ratio of the second density. For more
details on this we refer to Jones (1998).

We turn to the latent state variables Z and J , and the parameter vector Θ. We choose
prior distributions and hyper-parameters as listed below. We underline for prior and overline
for posterior distributions to simplify the notation.

– J : The posterior distribution of Jih is Bernoulli with jump probability of p = A/(A+B),
where

A = h(λ0 + λ1X(i−1)h) exp




−
(
Xih −X(i−1)h − κ(θ −X(i−1)h)h− Zih

)2

2hσ2X2b
(i−1)h




,

B = (1− h
(
λ0 + λ1X(i−1)h

)
) exp




−
(
Xih −X(i−1)h − κ(θ −X(i−1)h)h

)2

2hσ2X2b
(i−1)h




.

– Z: In case of a normally distributed jump, the posterior for the jump size is normally
distributed with Zih ∼ N (B/A,

√
1/A) (the two parameters being the mean and the

standard deviation) where

A = Jih
hσ2X2b

(i−1)h
+ 1
σ2
J

and B =
Jih

(
Xih − (1− hκ)X(i−1)h − hθκ

)

hσ2X2b
(i−1)h

+ µJ
σ2
J

.

If jumps are assumed to be exponential, the posterior is a truncated normal Zih ∼
N (A,B)1R+ (with support on the positive real axis and the two parameters being
the mean and standard deviation of the underlying normal distribution). In the case
Jih = 1, this distribution is defined by the parameters

A = Xih −X(i−1)h + κ(θ −X(i−1)h)h+ hσ2η−1
J X2b

(i−1)h and B =
√
hσXb

(i−1)h.
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If Jih = 0, the posterior is a draw from Zih ∼ exp(ηJ) as the data is uninformative
about the jump size (where exp is the exponential distribution and its parameter is the
mean of this distribution).

– κ: We opt for a prior with a normal distribution i.e. κ ∼ N (µκ, σκ). Alternatively,
a truncated prior would restrict the support to the positive axis, but since the actual
draws for all models are significantly bounded away from zero, a normal prior suffices.
This choice implies a normal posterior and thus κ can be simulated directly. The
posterior distribution is κ ∼ N (B/A,

√
1/A), where

A = 1
σ2
κ

+
T/h∑

i=1

h
(
θ −X(i−1)h

)
2

σ2X2b
(i−1)h

B = µκ
σ2
κ

+
T/h∑

i=1

(
θ −X(i−1)h

) (
Xih −X(i−1)h − JihZih

)

σ2X2b
(i−1)h

As it is reasonable to assume that different models imply similar mean-reversion levels,
we choose µκ = 0 and σκ = 1, independent of the model. These hyper-parameters
imply non-informative prior distributions for all models under consideration.

– θ: We choose a normally distributed prior i.e. θ ∼ N (µθ, σθ). This choice implies a
normally distributed posterior and thus it can also be simulated directly. The posterior
distribution is θ ∼ N (B/A,

√
1/A), where

A = 1
σ2
θ

+
T/h∑

i=1

hκ2

σ2X2b
(i−1)h

B = µθ
σ2
θ

+
T/h∑

i=1

κ
(
Xih − JihZih +X(i−1)h (hκ− 1)

)

σ2X2b
(i−1)h

We use similar priors for the log and the level specification. For the level specification
we employ θ ∼ N (18, 5), and θ ∼ N (log(18), 0.4).

– σ: We draw σ2 and use an inverse Gamma prior, i.e. σ2 ∼ IG(ασ2 , βσ2). This choice
implies an inverse gamma posterior

σ2 ∼ IG


ασ2 + T

2h, βσ2 + 1
2

T/h∑

i=1

(
Xih −X(i−1)h − κ(θ −X(i−1)h)h− ZihJih

)2

hX2b
(i−1)h


 .

For all models we use distributions with very large variances and hence impose little
information. In particular ασ2 and βσ2 are chosen such that their mean is between 0.052

and 0.22 (depending on the model) and we use a unit variance for all models.
– λ0 and λ1: In the state independent case (λ1 = 0), λ0 can be drawn directly. Since

we draw the jumps per discretization interval we draw λ̃0 = hλ0. Employing a beta
distributed prior, i.e λ̃0 ∼ B

(
α
λ̃0
, β
λ̃0

)
, the posterior is beta as well with

λ̃0 ∼ B

α

λ̃0
+
T/h∑

i=1
Jih, βλ̃0

+ T

h
−
T/h∑

i=1
Jih


 .

where we choose the parameters α
λ̃0

= 1 and β
λ̃0

= 15. In the state-dependent case we
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draw the parameters from

(λ0, λ1) ∝ p(λ0, λ1)
T/h∑

i=1

(
h
(
λ0 + λ1X(i−1)h

))Jih +
(
1− h

(
λ0 + λ1X(i−1)h

))1−Jih

using a random walk Metropolis algorithm. The prior p(λ0, λ1) is chosen to be a
uniform distribution over [0, 1] × [0, 1]. The right bound is arbitrary but large. This
prior provides no information over a wide range of realistic parameter values.

– µJ and σJ : These two parameters can be estimated from the time series of estimated
jumps Z. Using a normally distributed prior µJ ∼ N (µµJ , σµJ ), the corresponding
posterior for the expected jump size is

µJ ∼ N

σ

2
JµµJ + σ2

µJ

∑T/h
i=1 Zih

σ2
J + T

h σ
2
µJ

,

(
T

hσ2
J

+ 1
σ2
µJ

)−0.5

 .

Similarly, the jump-size variance can be drawn as a linear regression parameter. Using
σ2
J ∼ IG(ασ2

J
, βσ2

J
). This choice implies an inverse gamma posterior

σ2
J ∼ IG


ασ2

J
+ T

2h, βσ2
J

+ 1
2

T/h∑

i=1
(Zih − µJ)2


 .

Prior distributions with very large standard deviations are chosen for both jump pa-
rameters. We use µJ ∼ N (0, 10) for the level models and µJ ∼ N (0, 1) for the log
models. For σ2

J we utilize a prior distribution with mean 0.01 and standard deviation
of 5 for the log models and mean 9 and standard deviation 20 for the level models.

– ηJ : We draw 1/ηJ . In the case where jumps are exponentially distributed, using a
gamma distributed prior, i.e. 1/ηJ ∼ G(αηJ , βηJ ). The corresponding posterior is
gamma as well with

1/ηJ ∼ G

αηJ + T

h
, βηJ +

T/h∑

i=1
Zih


 .

We use again hyperparameters that imply relatively uninformative jump sizes. In the
log models we use parameters that imply a mean of 10 and a standard deviation of 20,
whereas in the level models we use a mean of 0.2 and a standard deviation of 1.

B Complete Conditionals and Prior Information - SVV Models

The time discretization between two observations for this model is given by

Xt+1 = Xt +
1/h−1∑

i=0

[
κ (θ −Xt+ih)h+

√
hVt+ih ε

x
t+(i+1)h + Zt+(i+1)hJt+(i+1)h

]

Vt+1 = Vt +
1/h−1∑

i=0

[
κv (θv − Vt+ih)h+ σv

√
hVt+ih ε

v
t+(i+1)h

]
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where εxt and εvt are both standard normal with correlation %. To augment the data set, the
draw from the posterior of elements in Xu is now proportional to

p
(
Xih |X(i−1)h,Z,J ,V ,Θ

)
× p

(
X(i+1)h |Xih,Z,J ,V ,Θ

)

where we use the same Metropolis algorithm as before.
Prior distributions and the hyper-parameters used in the empirical implementation of this

model are given as follows:
– J : The posterior distribution of Jih is Bernoulli with jump probability of p = A/(A+B),

where

A = hλ0 exp
[
− 1

2(1− %2)
(
C2
ih + (D1

ih)2 − 2%CihD1
ih

)]
,

B = (1− hλ0) exp
[
− 1

2(1− %2)
(
C2
ih + (D0

ih)2 − 2%CihD0
ih

)]
.

where

Cih =
(
Vih − V(i−1)h − κv

(
θv − V(i−1)h

)
h
)
/
(
σv
√
hV(i−1)h

)
,

D1
ih =

(
Xih −X(i−1)h − κ

(
θ −X(i−1)h

)
h− Zih

)
/
(√

hV(i−1)h
)
,

D0
ih =

(
Xih −X(i−1)h − κ

(
θ −X(i−1)h

)
h
)
/
(√

hV(i−1)h
)

– Z: In case of a normally distributed jump, the posterior for the jump size is normally
distributed with Zih ∼ N (B/A,

√
1/A) where

A = Jih
h (1− %2)V(i−1)h

+ 1
σ2
J

and B =
Jih

(
Fih −

√
h%Cih

√
V(i−1)h

)

h (1− %2)V(i−1)h
+ µJ
σ2
J

.

where Cih is defined as before and Fih = Xih −X(i−1)h − κ(θ −X(i−1)h).
– λ0, µJ , σJ : These can be estimated based on Z and J as before. We use λ̃0 ∼
B (1, 25) because it is reasonable to assume a priori that the inclusion of a stochastic
volatility-of-volatility component reduces the jump intensity. We use priors with little
information for the other parameters: µJ ∼ N (0.1, 0.2) and for σ2

J we use an inverse
gamma distribution with mean 0.12 and unit standard deviation.

– κ: We use the same priors for this parameter as in the one-dimensional case i.e. κ ∼
N (0, 1). The posterior for this parameter now reflects the correlation between the two
state variables and is given by κ ∼ N (B/A,

√
1/A), where

A = 1
σ2
κ

+
T/h∑

i=1

h
(
θ −X(i−1)h

)
2

(1− %2)V(i−1)h

B = µκ
σ2
κ

+
T/h∑

i=1

(
θ −X(i−1)h

) (
−%Cih

√
hV(i−1)h +Xih −X(i−1)h − JihZih

)

(1− %2)V(i−1)h
.
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– θ: Again using the same prior as in the one dimensional model, the posterior is given
by θ ∼ N (B/A,

√
1/A), where

A = 1
σ2
θ

+
T/h∑

i=1

hκ2

(1− %2)V(i−1)h

B = µθ
σ2
θ

+
T/h∑

i=1

κ
(
−%Cih

√
hV(i−1)h + (hκ− 1)X(i−1)h +Xih − JihZih

)

(1− %2)V(i−1)h
.

– κv and θv: For all models we use κv ∼ N (0, 1). This leads again to κv ∼ N (B/A,
√

1/A)
with

A = 1
σ2
κv

+
T/h∑

i=1

h
(
V(i−1)h − θv

)2

(1− %2)σ2
vV(i−1)h

B = µκv
σ2
κv

+
T/h∑

i=1

(
V(i−1)h − θv

) (
V(i−1)h − Vih + %Dih

√
hV(i−1)hσv

)

(1− %2)σ2
vV(i−1)h

.

Also we have θv ∼ N (B/A,
√

1/A) with

A = 1
σ2
θv

+
T/h∑

i=1

hκ2
v

(1− %2)V(i−1)hσ2
v

B = µθv
σ2
θv

−
T/h∑

i=1

κv

(
1− hκv + −Vih+%Dih

√
hV(i−1)hσv

V(i−1)h

)

(1− %2)σ2
v

.

whereDih =
(
Xih −X(i−1)h − κ

(
θ −X(i−1)h

)
h− ZihJih

)
/
(√

hV(i−1)h
)
. We use θv ∼

N (0.3, 1).
– σv and %: Both parameters don’t have posterior distributions of known form and hence

we update them with a random walk Metropolis algorithm. We assume uniform priors
for both parameters, where the parameter % is restricted to [−1, 1] and σv is restricted
to [0, 1]. For σv one could alternatively choose a prior with support on the whole real
axis.

– V : We update the variance one at a time. This implies the following full conditional
distribution for Vih:

p(Vih|V−ih,X,Z,J,Θ) ∝ 1
Vih

exp
[
− 1

2(1− %2)
(
C2
ih +D2

ih − 2%CihDih

)]

× exp
[
− 1

2(1− %2)
(
C2

(i+1)h +D2
(i+1)h − 2%C(i+1)hD(i+1)h

)]

where Cih and Dih are defined as before and V−ih denotes the variance vector except
for Vih. For the first and the last day in the sample the formulae apply with a slight
adjustment. We use a random walk Metropolis algorithm, tuned to yield acceptance
rates of around 40%.
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