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ABSTRACT

It is widely accepted that some of the most accurate predictions of aggregated asset returns are based
on an appropriately specified GARCH process. As the forecasthorizon is greater than the frequency
of the GARCH model, such predictions either require time-consuming simulations or they can be
approximated using a recent development in the GARCH literature, viz. analytic conditional moment
formulae for GARCH aggregated returns. We demonstrate thatthis methodology yields robust and
rapid calculations of the Value-at-Risk (VaR) generated bya GARCH process. Our extensive empiri-
cal study applies Edgeworth and Cornish-Fisher expansionsand Johnson SU distributions, combined
with normal and Studentt, symmetric and asymmetric (GJR) GARCH processes to returnsdata on
different financial assets; it validates the accuracy of theanalytic approximations to GARCH aggre-
gated returns and derives GARCH VaR estimates that are shownto be highly accurate over multiple
horizons and significance levels.
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1 INTRODUCTION

In an era when financial products can be extremely complex, sophisticated models for the density

forecasting of portfolio returns are an important topic foracademic research. Forward-looking re-

turns distributions have a plethora of applications to portfolio risk assessment and allocation opti-

mization, and accurate forecasts of the entire distribution are crucial if we believe that returns depart

significantly from normality.

Given the widely documented characteristics of financial asset returns, quite complex dynamic

models are needed for predicting distributions of underlying asset returns. A salient feature is their

volatility clustering - that is, "large changes tend to be followed by large changes – of either sign – and

small changes tend to be followed by small changes" (Mandlebrot, 1963). Generalised autoregressive

conditional heteroscedastic (GARCH) models, introduced by Engle (1982), Bollerslev (1986) and

Taylor (1986), have proved very successful in capturing this behaviour, and they can also explain why

asset returns distributions are skewed and leptokurtic.

When aggregated returns are generated by a GARCH process, Engle (2003) argues in his Nobel

lecture that simulations are required to predict the quantiles of the returns distribution over a time hori-

zon which is longer than the frequency of the model. Simulations are only asymptotically exact and

it can be very time consuming to simulate aggregated GARCH returns distributions to a satisfactory

degree of accuracy. This computational burden will reduce the scope for out-of-sample tests of the

predictive returns distributions. By the same token, any practical implementation of a GARCH model

in portfolio risk assessment and/or optimization will be limited to over-night rather than intra-day

calculations.

Hence, there is a clear need for fast and accurate analytic approximations to the returns distribu-

tions that would otherwise need to be simulated for various GARCH processes. This paper presents an

empirical study of the effectiveness of the modelling framework suggested by Alexander, Lazar and

Stanescu (2011) for generating GARCH aggregated returns distributions, with particular reference to

the accuracy of lower quantiles that are used for estimates of portfolio Value-at-Risk (VaR).1

1Alexander, Lazar and Stanescu (2011), henceforth denoted by ALS, derived analytic formulae for the conditional
moments of forward and aggregated GJR-GARCH returns, and forward and aggregated GJR-GARCH variances, up to
order four, with a generic innovation process, thus encompassing a number of standard GARCH models. We shall utilize
only a subset of their results, viz. their formulae for the moments of the aggregated returns distribution, under just four
standard GARCH models, namely the symmetric GARCH(1,1) process and the asymmetric GJR-GARCH process, each
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Since the 1996 Amendment to the Basel I Accord, VaR has becomethe standard metric for

financial risk assessment and reporting, not only in the major banks that must now use VaR as a basis

for their assessment of market risk capital reserves, but also in asset management, hedge funds, mutual

funds, pension funds, corporate treasury and indeed in virtually every large institution worldwide that

has dealings in the financial markets. As a result the academic literature on VaR is huge.2 Some of

the most influential academic research concerns the use of GARCH processes to measure VaR at the

aggregate (“top-down") level, rather than utilizing standard (“bottom-up") VaR model for assessing a

firm’s market risk capital. A path-breaking paper by Berkowitz and O’Brien (2002) utilizes aggregate

profit and loss data from six of the world’s major banks to demonstrate a very clearly superior accuracy

in top-down GARCH-based VaR estimates relative to more traditional, bottom-up VaR estimates.

Given the frequent turmoil in financial markets and the pervasive use of the VaR metric through-

out the industry, the construction of fast, accurate and easily implemented VaR measures is not only

timely – it is of great practical and regulatory importance.The contribution of our paper lies in that

it applies moment-based approximation methods frequentlyused in the literature and/or practice, like

the Cornish-Fisher expansion or Johnson SU distribution, in a new modellling framework, i.e. a

GARCH VaR context, thus combining the accuracy of GARCH modelling with the speed of these

approximation methods. Also, the paper provides rather extensive empirical tests of these approxi-

mations in a GARCH framework, using different statistical tests, data samples, horizons, significance

levels and an out-of-sample period that includes the current crisis.3

First we apply the aggregated return moment formulae of ALS to three broad market risk factors:

an equity index (S&P 500), a cross-currency pair (Euro/dollar), and a discount bond (3-month US

Treasury bill). Then we apply standard distribution approximation methods to these moments (the

Edgeworth expansion and a fit of the Johnson SU distribution)and evaluate their accuracy using the

asymptotically exact simulated distributions as benchmark.4 But the main focus of this paper is on

with normal and Studentt error distributions.
2A condensed literature survey is provided in Section 3. Morecomprehensive reviews may be found in Alexander

(2008), Angelidis and Degiannakis (2009) and Christoffersen (2009).
3In-sample size for GARCH model parameter estimation is 10 years of daily log returns; out-of-sample statistical tests

cover a 10-year period from 3 January 2000 to 31 December 2009.
4We examine the proximity of each quasi-analytic distribution to the simulated distribution using both Kolmogorov-

Smirnov (see Kolmogorov (1933), Smirnov (1939), Massey(1951)) and Cramer-von Mises tests (see Cramer (1928) and
Anderson and Darling (1952)).
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the speed and accuracy of our quasi-analytic VaR predictions, which are assessed using the coverage

tests of Christoffersen (1998). The reminder of this paper is organised as follows: Section 2 presents

the theoretical methodology that we shall implement for ourempirical results; Section 3 reviews the

VaR literature and explains how analytic formulae for the first four moments of aggregated GARCH

returns can be used to approximate VaR; Section 4 presents the data and empirical results;5 and

Section 5 concludes.

2 APPROXIMATE AGGREGATEDGARCH RETURNSDISTRIBUTIONS

Our purpose is to approximate distributions of the aggregated returns in a GARCH framework that

capture the important characteristics of financial asset returns, i.e. their volatility clustering and their

non-normal distributions. Here we show how such approximate distributions can be obtained using

analytic formulae for the first four conditional moments of GARCH aggregated returns.

Consider the following generic GJR specification, introduced by Glosten, Jagannathan and Run-

kle (1993), for the generating process of a continuously compounded portfolio return from timet− 1

to timet, denotedrt:

rt = µ+ εt, εt = zth
1/2
t , zt ∼ D(0, 1),

with ht = ω + α ε2t−1 + λ ε2t−1I
−
t−1 + β ht−1,

whereht = V (rt |Ωt−1 ) is the variance of the portfolio return, conditional on the information set

Ωt−1 = {rt−j , j ≥ 1} . The GARCH errorεt is a disturbance process andzt is a sequence ofi.i.d. zero

mean unit variance random variables with distributionD. I−t is an indicator function which equals 1

if εt < 0 and zero otherwise. The symmetric GARCH(1,1) model can be obtained from the above by

equatingλ = 0. In our empirical results we shall allowD (0, 1) to be either a standard normal or a

standardized Studentt distribution, with degrees of freedom estimated by maximumlikelihood along

with the other GARCH model parameters. Thus we shall consider four different possibilities for the

GARCH processes that are most appropriate for different types of asset returns, namely the normal

and Studentt GJR and GARCH(1,1) models.

Denote the first four central moments of then-period future aggregated returns generated by the

5For convenience, the standard statistical that underpin these results are stated in an appendix.
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model above as:

Et

[

(Rtn −Et (Rtn))
i
]

for i = 1, 2, 3, 4, whereRtn =
n
∑

s=1

rt+s.

ALS (Theorem 1) derived exact formulae for both central and standardized moments of the aggregated

returns. The conditional meañM (1)
R,n, varianceM (2)

R,n, skewnessTR,n, and kurtosisKR,n of then-period

return are given by:

M̃
(1)
R,n = nµ, M

(2)
R,n = nh̄ + (1− ϕ)−1 (1− ϕn)

(

ht+1 − h̄
)

TR,n =

[

τz

n
∑

s=1

Et

(

h
3/2
t+s

)

+ 3

n
∑

s=1

n−s
∑

u=1

Et

(

εt+sε
2
t+s+u

)

]

(

M
(2)
R,n

)−3/2

,

KR,n =









κz

n
∑

s=1

Et

(

h2
t+s

)

+
n
∑

s=1

n−s
∑

u=1

(

4Et

(

εt+sε
3
t+s+u

)

+ 6Et

(

ε2t+sε
2
t+s+u

))

+12
n
∑

s=1

n−s
∑

u=1

n−s−u
∑

v=1

Et

(

εt+sεt+s+uε
2
t+s+u+v

)









(

M
(2)
R,n

)−2

,

with:

1. ϕ = α + λF0 + β, with F0 being the distribution function forD(0, 1) evaluated at zero;

2. h̄ = ω(1− ϕ)−1, so ifϕ ∈ (0, 1), thenh̄ is the steady-state variance;

3. Et

(

h
3/2
t+s

)

≃ 5
8
(Et (ht+s))

3/2 + 3
8
Et

(

h2
t+s

)

(Et (ht+s))
−1/2, where

Et (ht+s) = h̄ + ϕs−1
(

ht+1 − h̄
)

, andEt

(

h2
t+s

)

= c1 +
(

h2
t+1 − c3

)

γs−1 + c2ϕ
s−1

with γ = ϕ2 + (κz − 1) (α + λF0)
2 + κzλ

2F0 (1− F0),

c1 =
(

ω2 + 2ωϕh̄
)

(1− γ)−1, c2 = 2ωϕ
(

ht+1 − h̄
)

(ϕ− γ)−1 andc3 = c1 + c2.

4. Et

(

εt+sε
2
t+s+u

)

= ϕu−1

(

ατz + λ
0
∫

z=−∞
z3f (z) dz

)

Et

(

h
3/2
t+s

)

, wheref is thepdf of D(0, 1).

5. Et

(

εt+sε
3
t+s+u

)

= τzEt

(

εt+sh
3/2
t+s+u

)

, where

Et

(

εt+sh
3/2
t+s+u

)

≃ 3
4
c4

[

(Et (ht+s+u))
1/2 + ωϕ(ϕ− γ)−1(Et (ht+s+u))

−1/2
]

ϕu−1Et

(

h
3/2
t+s

)

+3
8
(Et (ht+s+u))

−1/2
γu−1

(

c5Et

(

h
5/2
t+s

)

+ 2ωγ(γ − ϕ)−1
c4Et

(

h
3/2
t+s

))

,

c4 = ατz + λ
0
∫

z=−∞
z3f (z) dz

c5 = α
(

αµ
(5)
z + 2βτz

)

+ λ (2α+ λ)
0
∫

z=−∞
z5f (z) dz + 2λβ

0
∫

z=−∞
z3f (z) dz

Et

(

h
5/2
t+s

)

≃ 1
8

(

µ̃
(1)
h,s

)1/2
(

15µ̃
(2)
h,s − 7

(

µ̃
(1)
h,s

)2
)

6. Et

(

ε2t+sε
2
t+s+u

)

= h̄ (1− ϕu)Et (ht+s) + ϕu−1κz (α + λF0 ++κ−1
z β)Et

(

h2
t+s

)

7. Et

(

εt+sεt+s+uε
2
t+s+u+v

)

= c4ϕ
v−1Et

(

εt+sh
3/2
t+s+u

)

Table 1 outlines the modifications to the above generic formulae needed for the normal and Studentt
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Normal Studentt
F0

1
2

1
2

τz 0 0
κz 3 3ν−2

ν−4

µ
(5)
z 0 0

0
∫

z=−∞
z3f (z) dz −

√

2
π

− 2√
π

(ν−2)3/2

(ν−1)(ν−3)

Γ( ν+1
2 )

Γ( ν
2 )

0
∫

z=−∞
z5f (z) dz −4

√

2
π

− 8√
π

(ν−2)5/2

(ν−1)(ν−3)(ν−5)

Γ( ν+1
2 )

Γ( ν
2 )

TABLE 1: Parameter values for the normal and Student t special cases
Note: ν denotes the degrees of freedom of the Student t distribution; ν > k for the k-th moment of a Student t
distribution to exist and be finite.

GJR special cases. The normal and Studentt GARCH(1,1) can be obtained by equatingλ = 0 in the

formulae for the corresponding GJR models.

Following ALS we approximate the distribution of then-period returns using its first four mo-

ments and three different approximation methods, i.e. the Cornish-Fisher expansion, the Edgeworth

expansion and Johnson SU distributions.

Cornish and Fisher (1937) and Fisher and Cornish (1960) developed an asymptotic expansion for

the quantile function of a probability distribution whose cumulants6 (moments) are known in terms

of the standard normal quantile function.7 When only the first few cumulants are used, one obtains an

approximation of the quantile function. The Cornish - Fisher approximation is popular in empirical

applications mainly due to its speed and relative simplicity. While the approximation is expected

to perform well in the vicinity of the normal, because it is a local approximation, increasing the

order does not necessarily improve the error of the approximation. Moreover, the resulting quantile

function is not necessarily monotonic as a function of the tail probability, and it suffers from tail

behaviour problems - i.e. the approximation error increases at extreme quantiles.8

Somewhat similar to the Cornish-Fisher expansion, the Edgeworth expansion represents a method

of approximating a density of interest around a base density, usually the standard normal density. It

6The cumulants represent an alternative to the moments of a probability distribution; while the cumulants set is equiv-
alent to that of the moments, there are cases where stating the problem in terms of the cumulants rather than the moments
may be preferred. The cumulants are defined by the cumulant generating function, which is equal to the natural logarithm
of the moment generating function.

7Hill and Davis (1968) later generalized the expansion, by expressing the quantiles of the distribution in question in
terms of the quantiles of a base distribution, which need notbe the standard normal.

8See also Jaschke (2002).
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belongs to the class of Gram-Charlier expansions (see Chebyshev (1860), Chebyshev (1890), Gram

(1883), Charlier (1905) and Charlier (1906)), being a rearrangement of a Gram-Charlier A series.

However, Gram-Charlier A series and Edgeworth series are only equivalent asymptotically; in empir-

ical applications where finite order approximations are considered, they can differ significantly. The

Edgeworth version has the theoretical advantage of being a true asymptotic expansion, i.e. the error

of the approximation is controlled. However, it shares the monotonicity and convergence problems of

the Cornish-Fisher expansion. The first few terms of the Edgeworth expansion are:

fx (x) ≃ fE
x (x) = ϕ (x)− τx

6
ϕ(3) (x) +

(κx − 3)

24
ϕ(4) (x) +

τ 2x
72

ϕ(6) (x) , (1)

wherefE
x (x) is the second-order Edgeworth approximation of the densityof interestfx, ϕ is the

standard normal density andϕ(k) is itskth derivative, andτx andκx denote the skewness and kurtosis

of fx. For our purposesfx will be the density of the normalised aggregated returns.

Finally, the third approximation method we use here, the Johnson SU distribution, differs from

the previous two in that it is a proper distribution rather than an expansion. Johnson (1949) introduced

three monotonic transformations from a variablex to a standard normal variablez, corresponding to

three (Johnson) distributions.9 The Johnson SU distribution considered in this paper is the most

relevant for financial applications, since it is leptokurtic. A random variablex is said to follow a

Johnson SU distribution if:10

x = ξ + λ sinh

(

z − γ

δ

)

(2)

wherez is a standard normal variable. Tuenter (2001) developed a very fast algorithm for the es-

timation of the four parametersδ, γ, λ andξ. Specificly, using Tuenter’s (2001) algorithm, we are

matching the first four conditional moments of then-period aggregated GARCH returns (detailed in

Section (2) above) to the corresponding moments of a JohnsonSU distribution. Although flexible,

the main disadvantage of this approach is that a Johnson SU distribution is not guaranteed to exist for

any set of mean, variance, skewness and (positive) excess kurtosis.

9For a characterization of the family of Johnson distributions see also Bowman and Shenton (1983).
10Here we follow the notation of Tuenter (2001) for the four parameters of the Johnson SU (JSU) distribution. However,

parametersλ andγ of the JSU distribution should not be confused with the GJR-GARCH parameterλ or the constantγ
used in Section 2.
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3 VALUE-AT-RISK

Theα% n-day VaR of a portfolio is minus theα-quantile of itsn-day returns distribution, thus it is

the loss that is anticipated with(1 − α)% confidence from holding an unmanaged portfolio over a

risk horizon ofn days.11 Manganelli and Engle (2001) distinguish three major types of VaR models,

according to the methods used to forecast a distribution forfuture returns of the portfolio:

1. Parametric VaR models, which are mainly represented by the Riskmetrics methodology (see

J. P. Morgan, 1996), assume a particular approximation of the portfolio mapping function,

e.g. a linear (delta) approximation, or a quadratic (delta-gamma) approximation. Analytic

formulae for VaR estimates may be derived only when tractable, parametric distributions are

used for risk factor returns. But these are often unrealistic and inaccurate. Instead Monte Carlo

simulation must be applied. Efficient Monte Carlo methods were first proposed by Glasserman,

Heidelberger and Shahabuddin (2001) and many other researchers since, because this type of

simulation can be extremely time-consuming, as noted below.

2. Non-parametric VaR models are essentially represented by historical simulation. Perignon and

Smith (2010) note that this is the most widely-used approach, based on a survey of major banks

around the world. In a more sophisticated system this is often augmented with a GARCH

model, such as in the filtered historical simulation methodology introduced by Barone-Adesi

et al. (1998, 1999).12 Alexander and Sheedy (2008) demonstrate that historical simulation is

highly inaccurate without such additional filtering.

3. Semi-parametric VaR models include applications of extreme value theory (see Danielsson and

deVries (1998) for example); and applications of linear andnon-linear regression quantile tech-

niques, as in Taylor (1999), Chernozhukov and Umantsev (2001), and Engle and Manganelli

(2004). Techniques based on quasi-maximum likelihood GARCH, developed in Bollerslev and

Woolridge (1992), also fall into this category. Other semi-parametric VaR models combine the

above approaches – see Manganelli and Engle (2001) and McNeil and Frey (2000).

11We employ the standard notationα for the the quantile of the aggregated returns distribution; this should not be
confused with theα parameter of the GARCH models.

12See also Boudoukh, Richardson and Whitelaw (1998), for an alternative filtering approach.
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The approach we propose falls into the category of parametric VaR models, and is closely related

to a sub-stream of the academic research on VaR. As we detail below, we estimate VaR from al-

ternative approximations of the distribution of returns based on moments. Zangari (1996) was the

first to introduce a parametric method for estimating VaR based on higher moments, which he called

Modified VaR; this can be thought of as an estimator for VaR that corrects the baseline Gaussian

VaR for skewness and kurtosis. The "correction" is done using a Cornish-Fisher expansion. Follow-

ing Zangari (1996), the Cornish-Fisher expansion was also applied for quantile estimation by Mina

and Ulmer (1999), Favre and Galeano (2002), Amenc, Martellini and Vaissie (2003), Gueyie and

Amvella (2006), Qian (2006), Boudt, Peterson and Croux (2009) and Simonato (2010). Favre and

Galeano (2002), Amenc, Martellini and Vaissie (2003) and Gueyie and Amvella (2006) all use the

Modified VaR in a portfolio optimisation setting, while Qian(2006) employs it in a risk budgeting

application. Mina and Ulmer (1999) compare four alternative methods for constructing an approx-

imate delta-gamma portfolio distribution, namely Johnsondistributions, Cornish-Fisher expansion,

Fourier transforms (for the moment generating function) and partial Monte Carlo. Also related to this

research, Wong and So (2003) approximate the distribution of QGARCH13 aggregated returns with a

skewed Studentt distribution based on moments and subsequently derive a corresponding VaR mea-

sure. Their model encompasses a general GARCH(1,1) processwith various innovation distributions,

but it does not encompass the GJR model that is used in this paper. Also, their chosen approximation

method, the skewed Studentt distribution, is different from those we employ here. Boudt, Peterson

and Croux (2009) derive a Modified conditional VaR – also called expected tail loss (ETL) – as an

application of the Edgeworth expansion, while Simonato (2010) considers VaR and ETL measures

derived for Cornish-Fisher and Cram-Charlier expansions and Johnson distribution approximations,

in the context of Merton’s (1976) model.

An α% n-day VaR estimate is derived from theα-quantile of then-period portfolio return dis-

tribution as:

VaRn,α,t = −F̂−1
t;t+n (α) , or equivalently as

−V aRn,α,t
∫

−∞

f̂t;t+n (x) dx = α (3)

13See Engle (1990), Sentana (1991) and Campbell and Hentschel(1992).
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whereF̂−1
t;t+n is the timet forecast of the distribution function for returns aggregated from timet to

time t+ n, andf̂t;t+n is the corresponding density function. The corresponding ETL is given by:14

ETLn,α,t = − 1

α

−V aRn,α,t
∫

x=−∞

xf̂t;t+n (x) dx (4)

The purpose of this section is to present analytic approximations for (3) and (4) based on the first

four moments of aggregated GARCH returns. Some of the VaR formulae (though not the ETL) are

quite well-established; indeed they have been applied to VaR modelling by several authors and we

briefly reviewed the contributions of some of these authors above. However, they have never before

been applied in the GARCH framework. Thus, given these moment-based VaR and ETL formulae,

we use the results for the conditional moments of aggregatedreturns in a GARCH context to derive

analytic approximations for GARCH VaR and ETL purely in terms of the estimated GARCH model

parameters.

Using (2), one can immediately write the expression for the Johnson SU VaR as:

VaRJSU
n,α,t = −λ sinh

(

zα − γ

δ

)

− ξ, (5)

wherezα = Φ−1 (α) is the lowerα-quantile of the standard normal distribution. The formulafor the

Johnson SU ETL, derived in Simonato (2010) (and adapted to our setting) is:

ETLJSU
n,α,t = −α−1

(

ξΦ (y) +
λ

2
e(−

γ
δ
+ 1

2δ2
)Φ

(

y − 1

δ

)

− λ

2
e(

γ
δ
+ 1

2δ2
)Φ

(

y +
1

δ

))

(6)

wherey = γ + δsinh−1
(

VaRJSU
n,α,t−ξ

λ

)

.

Truncating the terms beyond the fourth cumulant, the expression for the Cornish-Fisher VaR as

a function of the first four standardized moments of then-day aggregated returns is:

VaRCF
n,α,t = −

[

zα +
TR,n

6

(

z2α − 1
)

+
(KR,n − 3)

24
zα
(

z2α − 3
)

−
T2

R,n

36
zα
(

2z2α − 5
)

]

√

M
(2)
R,n−M̃

(1)
R,n

(7)

To express the Cornish-Fisher ETL one would need to perform an inversion of the Cornish-Fisher

expansion, which is given in terms of the quantile (or inverse distribution) function. To our knowledge,

14The definitions in (3) and (4) are stated for continuous distribution (density) functions. Acerbi and Tasche (2002)
give definitions for VaR and ETL that also apply to discontinuous distribution functions.
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no such inversion was derived. One other possibility would be to integrate the expression in (7) after

VaRCF
n,α,t; however such an approach is deemed to be inaccurate, as the Cornish-Fisher VaR is less

accurate when we go further into the tail and is likely to be very inaccurate whenα → 0.

4 EMPIRICAL METHODOLOGY AND RESULTS

4.1 Data

The performance of our proposed quasi-analytical distribution forecasts and VaR methodologies is

tested using equity index (S&P 500), foreign exchange (Euro/dollar) and interest rate (3-month Trea-

sury bill) daily data. These three series represent three major market risk types (equity, foreign ex-

change and interest rate risk, respectively) and within each class they represent the most important risk

factors in terms of volumes of exposures. The three data setsused in this application were obtained

from Datastream and each comprise 20 years of daily data, from 1st January 1990 to 31st December

2009.15 Figure 1 plots the daily log returns for the equity and exchange rate data and the daily changes

in the interest rate.16 Table 2 presents the sample statistics of the empirical unconditional distribution

returns. In accordance with stylized facts on daily financial returns the mean of every series is not

statistically different from zero and the unconditional volatility is highest for equity and lowest for

interest rates.17 Skewness is negative and low (in absolute value) but significant for all three series,

so that extreme negative returns are more likely than extreme positive returns of the same magni-

tude, while excess kurtosis is always positive and highly significant, suggesting that the unconditional

distributions of the series have more probability mass in the tails than the normal distribution. We

notice that the interest rate sample exhibits the most significant departures from normality, while the

Euro/dollar series is the closest to normality among the three we analyze.
15Since the Euro was only introduced in 1999, the ECU/dollar exchange rate is used for the period between 1990 and

1999.
16First differences in fixed maturity interest rates are the equivalent of log returns on corresponding bonds.
17The standard error of the sample mean is equal to the (sample)standard deviation, divided by sample size and we

assumed 252 trading days per year to annualize the standard deviation into volatility.
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FIGURE 1: Returns The equity and exchange rate daily returns are computed as the first differences in the
log of the S&P500 index values and Euro/dollar exchange rates, respectively. The interest rate returns are
computed as first differences in interest rate values. All returns are computed over the period 1st January 1990
to 31st December 2009.

4.2 Empirical Methodology

Four different GARCH models, namely the baseline GARCH(1,1) and the asymmetric GJR, each

with normal and Studentt error distributions, are estimated for each of the three time series.18 The

estimation is conducted in a rolling window format, where a window of ten years of daily data (win-

dow size approximately 2500 observations) is rolled daily for an additional ten years. The resulting

time series of model parameters are subsequently used to estimate the first four conditional moments

of aggregated returns based on the analytic formulae from Section 2, from 3rd January 2000 to 31st

December 2009, for three time horizons:n = 5, 10, 20 working days, respectively. For the symmetric

models – the normal and Studentt GARCH(1,1) – the skewness is zero by construction. However,

18Based on the BIC and AIK information criteria, an AR(4) modelwas used to remove the autocorrelation in the data
for the 3-month Treasury bill sample, while for the S&P 500 sample an AR(2) suffices to remove all autocorrelation in
the returns; in what follows, estimation and testing is based on the residuals from these regressions for the two samples.
No autocorrelation was found in the foreign exchange data.
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S&P 500 EUR/USD 3M IR
Mean 0.00022 -2E-05 -2E-05

Maximum 0.1 0.0384 0.0076
Minimum -0.0947 -0.0462 -0.0081
Volatility 0.1862 0.1 0.0101
Skewness -0.1981*** -0.0992** -0.5007***

Excess kurtosis 9.1643*** 2.7136*** 28.2342***

TABLE 2: Summary statistics. The summary statistics are of the equity and exchange rate daily log returns,
and of the daily changes in interest rates from 1990 to 2009. Asterisks denote significance at 0.05 (*), 0.01 (**)
and 0.001(***). The standard error of the sample mean is equal to the (sample) standard deviation, divided by
sample size. The standard errors under the null of normalityare approximately(6/T )1/2 and(24/T )1/2for the
skewness and kurtosis, respectively, where T is the sample size. We used 252 risk days per year to annualize
the standard deviation into volatility.

the asymmetric specifications – the normal and Studentt GJR – lead to non-zero skewness estimates.

All four models yield positive excess kurtosis for all horizons and all time series.

4.3 Distribution Tests

For the implementation of the distribution tests describedin the Appendix we combine the four

GARCH specifications (the normal and Studentt GARCH(1,1) and GJR models) with two approx-

imation methods (the Johnson SU distribution and the Edgeworth expansion) and thus have eight

alternative approximate (theoretical) distributions to evaluate and compare with the corresponding

simulated distributions (based on 10000 simulations).19 From approximately 2500 sets of parameter

estimates and corresponding moments estimates, the tests are performed for 150 days from a low

volatility period (January to August 2006), 150 days from a high volatility period (August 2008 to

March 2009) and the last 150 observations from 2009. In Table3 these periods are labelled ‘low vol’,

‘high vol’ and ‘current’ respectively. Finally, the time horizon we consider here isn = 5 days.

Table 3 summarizes the results of the Kolmogorov-Smirnov (KS) and Cramer - von Mises

(CVM) tests for each of the eight approximate distributionsconsidered. We report the mean val-

ues and the associated standard deviations of the KS distanceD and CVM test statistic and also the

percentage of times when the computed test statistics were higher than the corresponding asymptotic

5% critical value. Since we perform the tests at the 5% significance level we expect a 5% rejection

19For the interest rate sample, fitting the Johnson SU distribution was problematic and hence, for this sample, we do
not report results for the Johnson SU Studentt GJR for either the distribution tests or the VaR coverage tests.
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rate. The 5% critical values are 0.0136 for the KS distance and 0.416 for the CVM test statistic.20

Although the asymptotic critical values do not apply exactly in our case, the model that produces the

lowest values of the test statistic is still the best among the alternatives.21

The results in Table 3 generally show that the proposed moment-based distributions success-

fully approximate the distributions of aggregated returnsobtained via GARCH simulations. When

departures from normality are less significant – as in the case of the Euro/dollar exchange rates –

both approximation methods and all GARCH models yield similar and very good results. However,

the more significant the departures from normality, the greater the differences between the results

produced by the two approximation methods. Thus, for the S&P500 sample, the results produced by

the two approximation methods are still very similar for thenormal models and comparable for the

Studentt models. However, for the interest rate sample, the Johnson SU distribution, when it exists,

produces superior results to its Edgeworth counterpart.22 In the great majority of cases the KS and

CVM tests agree on model rankings. While the KS test always yields better results (lower average

test statistics) when the Johnson SU distribution rather than the Edgeworth expansion is employed,

for the same GARCH model, in a few cases the CVM sometimes slightly favours the Edgeworth

methodology (e.g. Normal GARCH(1,1) in the ’current’ sub-period, for the S&P 500 sample).

20These are asymptotic results for a test where the distribution being tested for is continuous, fully known and generic
(no particular family of distributions assumed). Stephens(1970) derives modified statistics for the finite sample case;
however, with a sample size of 10000, these modifications arenot actually needed and the asymptotic results would apply,
if the hypothetical distribution were fully specified. However, in our case this distribution is based on estimated results and
hence the above mentioned critical values do not apply and wewould need to simulate the correct critical values if we were
to properly carry out the tests. Still, we report the percentage of times the test statistics are greater than the asymptotic
critical values, so that we can infer, approximately, if thetest results are at least in the vicinity of these asymptoticcritical
values. We also note that the results have to be interpreted with care since it is likely that the appropriate (simulated)
critical values for this testing exercise are lower than theasymptotic critical values reported above.

21What we mean by "best among alternatives" here is "closest tothe (respective) simulated distribution". However,
one has to interpret the results with care since the simulated distribution is obviously not the same for all alternative
approximate distributions.

22For the S&P 500 sample, the percentage differences between the values of test statistics obtained with the Johnson SU
and the Edgeworth expansion (for the same GARCH model) are nohigher than 10%, and even lower for the Euro/dollar
sample. However, the values of the distribution test statistics differ by a factor of at least 2.5 between the Johnson SU and
the Edgeworth expansion for the interest rate sample.
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4.4 VaR Estimation and Backtesting

We evaluate the accuracy of the proposed VaR estimates over 5, 10 and 20-day risk horizons using the

coverage tests of Christoffersen (1998) described in the Appendix.23 We combine the four different

GARCH models with two approximation methods, the Johnson SUdistribution and the Cornish-

Fisher expansion, and derive the VaR estimates for each GARCH model, and for each approximation

method, and forα = 10%, 5%, 1% and 0.1%.

Tables 4 - 6 summarize the results of the likelihood ratio (LR) tests for the unconditional cov-

erage, independence and conditional coverage of predictive intervals for log returns (or, in the case

of Treasury Bill rates, absolute changes) aggregated over horizons ofn = 5, 10 and 20 working days.

In these tables (*), (**), or (***) denote a result that is statistically significant at 10%, 5% and 1%,

respectively, i.e. the null of correct coverage is rejected. Also, if no value is reported for the indepen-

dence test, that is because there are no consecutive violations, and obviously the models in question

pass the test.

(a) S&P 500

The results in Table 3 show that the model that performs best across all horizons, significance levels

and approximation methods is the normal GJR, which incurs norejections in the coverage tests for

this sample. For the 10-day horizon, the Studentt GJR also performs extremely well, incurring no

rejections in the coverage tests. Also, none of the models isrejected in the independence test for this

sample, across all horizons and significance levels. For the5-day horizon, we notice that while there

are inter-model differences in terms of the test results obtained for different GARCH specifications,

the results obtained by combining the same GARCH model with different approximation methods

are either very similar (for the normal models) or slightly better better with the Johnson SU approxi-

mation. For example, for the 10% VaR estimates when a Studentt GARCH model is employed, the

results obtained with the Johnson SU are better (lowerLRuc andLRcc test statistics) than with the

corresponding Cornish-Fisher estimates. Finally, we can argue that the coverage tests results are in-

deed good for the proposed methodologies, bearing in mind that these are out-of-sample, forecasting

results.
23To avoid using over-lapping observations, as this would violate the independence assumption for the indicator process

in the unconditional coverage test, we use only everyn-th set of parameter/moments estimates, wheren is either 5, 10 or
20 working days.
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(b) Euro/dollar

The results further improve for the Euro/dollar sample, thesample with the least significant non-

normality features. Now both the normal GARCH(1,1) and the normal GJR yield no rejections in

the coverage tests, across all horizons, significance levels and approximation methods. Furthermore,

their Studentt counterparts also yield very few rejections. Again, none ofthe models is rejected in

the independence test, across all horizons and significancelevels.

(c) 3-month Treasury Bill

The 3-month Treasury Bill sample is the one exhibiting the most pronounced non-normalities among

the three samples we analyze. As for the distribution tests reported above, for this sample our method-

ology performs slightly less well than it does for the other two samples, especially for the longer

horizons. For the 5-day horizon we find that the normal GARCH(1,1) produces no rejections in the

coverage tests across all significance levels and approximation methods. The performance of the nor-

mal GJR is also good, being only marginally rejected in the independece test for the 5% VaR. For

the 10- and 20- day horizon, no model performs perfectly; however, the performance of the normal

GJR remains relatively good, especially when coupled with the Johnson SU distribution. Out of the

three samples we analyze, this is the only sample for which the models are sometimes rejected in

the independence tests. Also for this sample, the superior performance of the Johnson SU over the

expansion method is more apparent, especially if we comparethe results obtained for the 10% VaR.

To give an example of the speed of our methodology relative toMonte Carlo simulation, on a PC

with Intel i5-650 (dual core) and 4Gb RAM using Excel 2010 VBA, the time recorded for computing

Studentt GJR-GARCH VaR estimates for a 10-day horizon using our quasi-analytic methodology

was only 0.254 seconds. By comparison, to compute the 10-dayVaR based on 10,000 Monte Carlo

simulation took 13 seconds. It would be greater for VaR computions over longer horizons. Moreover,

10,000 is typically regarded as the minimum number of simulations to be used for a passable degree

of accuracy, and the time would be extrapolated linearly as the number of simulations increases.
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5 CONCLUSIONS

This paper demonstrates empirically that approximate aggregated GARCH return distributions can

be accurately constructed based on a number of alternative approximation methods. Subsequently,

we focused on quasi-analytic GARCH VaR measures constructed from analytic formulae for higher

moments and the accuracy of our results shows that time-consuming simulations are no longer needed

for GARCH VaR estimation.

Based on their occurrence in the related literature and on the feasibility of obtaining fast, ana-

lytical formulae for the distribution function and/or the associated VaRs and ETLs, we selected three

alternative approximation methods based on analytic moments. A comprehensive testing exercise

used three different samples on three major sources of market risk - equity (S&P 500), foreign ex-

change (Euro/dollar) and interest rate risk (3-month Treasury bill). We first tested how close the

approximate distributions constructed using the Johnson SU distribution and the Edgeworth expan-

sion are to their simulated counterparts. Consistently good results were obtained for the S&P 500 and

the Euro/dollar exchange rate, but the Johnson SU is superior for the T-Bill where non-normalities

are highly significant.

We then tested the accuracy of our methodology for VaR estimation using the likelihood ratio

tests for conditional coverage, proposed by Christoffersen (1998). Here we combine the Cornish-

Fisher expansion and the Johnson SU distribution with four GARCH specifications (normal and Stu-

dentt GARCH(1,1) and GJR) which results in eight alternative VaR models to test and compare. VaR

is estimated at four significance levels (0.1%, 1%, 5%, and 10%) and for three different time horizons

(5, 10 and 20 days). Our quasi-analytic GARCH VaR estimates are extremely accurate, especially

for the S&P 500 and Euro/dollar samples where departures from normality are less significant. When

models are rejected in the statistical testing, it is generally due to inappropriate unconditional cov-

erage and very rarely due to rejections in the independence tests. In fact, especially at the higher

confidence levels, the models very often yield no consecutive violations. The results are even more

remarkable if we consider that the analysis is entirely out-of-sample and that the testing period (2000-

2009) contains the Dotcom ’bubble burst’ (2000) and out of the ten years of out-of-sample data three

years cover the current financial crisis (2007-2009).
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APPENDIX: EVALUATION METHODS

We first investigate whether the proposed approximate distributions provide an adequate representa-

tion of the conditional distributions of aggregated returns. Since these distributions are not observable,

not even ex-post, we use simulated distributions as proxies. Specifically, we test whetherFm = Fs,

whereFm is the cumulative distribution function (cdf) for the approximate distribution of aggre-

gated returns constructed using the first four conditional moments and the Edgeworth expansion or

Johnson SU distribution approximation methods, andFs is the simulatedcdf for then-day GARCH

aggregated returns.Fs is given by the step-function of the sample:Fs (xi) = T−1i, wherexi with

i ∈ {1, 2, ..., T} is the increasingly ordered simulated sample,i = number of returns less than or equal

with xi, andT is the sample size (number of simulations).

To test whetherFm = Fs, we employ two well known distribution tests: the Kolmogorov-

Smirnov (KS), proposed by Kolmogorov (1933), Smirnov (1939), Scheffe (1943) and Wolfowitz

(1949) and the Cramer - von Mises (CVM), proposed by Cramer (1928).24. The KS test statis-

tic is given by: KS=
√
TD, whereD is the maximum distance between the two distributions,

i.e. D = max
x

|Fm (x)− Fs (x)|, whereas the CVM (ornω2) criterion is defined as: CVM=

T
∫

x

(Fm (x)− Fs (x))
2
dFm (x). For practical implementations and for an (increasingly) ordered

sample, simpler variants of the the KS and CVM test statistics are given by:

KS =
√
T max

1≤i≤T

{

max

[

Fm (xi)−
i− 1

T
,
i

T
− Fm (xi)

]}

,

CVM =

T
∑

i=1

[

Fm (xi)−
2i− 1

2T

]2

+
1

12T
,

Finally, these statistics only have standard distributions if the distribution under the null hypothesis is

entirely pre-specified, but in our case theFm distribution relies on estimated parameter values so the

theoretical critical values are no longer applicable.

To evaluate the accuracy of our quasi-analytic GARCH VaR we apply the statistical tests based

on VaR exceedances that have become standard in the applied financial economics literature: the

coverage tests for VaR accuracy of Christoffersen (1998) and others. The LR test, introduced by

Kupiec (1995) and extended by Christoffersen (1998), is themost frequently used statistical tool for

evaluating the performance of VaR models. Kupiec (1995) proposed two likelihood ratio (LR) tests:

24For generalizations of both the KS and CVM tests see Andersonand Darling (1952)
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one based on times until the first failure (TUFF) and another LR test based on the proportion of failures

(PF). However, as Kupiec himself acknowledges, both tests (and especially the TUFF version) have

relatively low power in small samples. Hence, unless a largesample is available for model assessment

purposes, these LR tests will have little power in deeming a VaR methodology inappropriate. Kupiec’s

(1995) PF test was later extended by Christoffersen (1998).25 Christoffersen’s conditional coverage

LR test (LRcc;α) asserts that a good VaR model is one that produces a series ofindicator functions

{It,α}Tt=1 ≡
{

IRtn<−VaRn,α,t

}T

t=1

which are Bernoulli(α) i.i.d. regardless of whetherRtn is serially correlated and/or heteroskedastic.

Christoffersen (1998) proved that:

LRcc;α = LRuc;α + LRind;α,

whereLRuc;α tests for the correct unconditional coverage, given that{It}Tt=1 is independent, while

LRind;α tests for the independence of this series.26 He also derives the following test statistics and

their respective distributions under the null to make the concepts operational:

LRuc;α = −2 ln

((

1− α

1− πα

)n0;α
(

α

πα

)n1;α
)

∼ χ2(1)

LRind;α = −2 ln

(

(1− π2;α)
n00;α+n10;απ

n01;α+n11;α

2;α

(1− π01;α)
n00;απ

n01;α

01;α (1− π11;α)
n10;απ

n11;α

11;α

)

∼ χ2(1)

LRcc;α = LRuc;α + LRind;α ∼ χ2(2)

where the ML estimates of the test statistics -L̂Ruc;α, L̂Rind;α, andL̂Rcc;α - are obtained for:

n̂1;α =

T
∑

t=1

Ît,α; n̂0;α = T − n̂1;α; π̂α =
n̂1;α

T
; n̂ij;α =

T
∑

t=1

Ĵij;t;α

π̂01;α =
n̂01;α

n̂00;α + n̂01;α
; π̂11;α =

n̂11;α

n̂10;α + n̂11;α
; π̂2;α =

n̂01;α + n̂11;α

n̂00;α + n̂10;α + n̂01;α + n̂11;α

25Christoffersen (1998) actually proposes a very general, model-free approach to evaluating interval forecasts; Value-
at-Risk forecasting is in effect a special case of interval forecasting, where the forecasting interval is one-sided. Moreover,
although developed in a VaR context, Kupiec’s test is not restricted to evaluating VaR models either: it can as well be
applied to evaluating interval forecasts: the test for unconditional coverage proposed by Christoffersen (1998) is infact
Kupiec’s PF test.

26One drawback of Christoffersen’s (1998) methodology is that independence of failures is only tested against a first
order Markov dependence; hence the LR test for independenceproposed by Christoffersen is unable to reject a VaR
methodology as being inappropriate even if the failure series exhibits some sort of dependence, but this is not of first
order Markov type. Christoffersen and Diebold (2000) and Clements and Taylor (2003) generalize this. However, their
approach is also not flawless, since the practical implementation estimation of their regression based testing procedure is
often troublesome, especially for extreme quantile estimates.
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Ît,α = I(rtn < −VaRn,α,t); Ĵij;t;α = I(Ît−1,α = i ∩ Ît,α = j); i, j = 0, 1

whereT is the sample size andrtn are the sample realizations of the random variableRtn.

LRuc;α is essentially a simple hypothesis test: the null hypothesis is that the difference between

the empirical exceedance rate and the desired levelα is zero.27 This null is then tested against the

alternative that the exceedance rate is significantly higher or lower than the desiredα. The test will

thus discard methods as being inappropriate either becausethey tend to produce too little or too few

exceedances, regardless of their timing. By also taking into account the clustering of exceedances,

as well as the number of times the VaR is exceeded,LRcc;α is a joint test of correct coverage and

independence of hits, i.e. correct conditional coverage.

27An exceedance occurs when the return is lower than minus VaR.
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Normal GARCH(1,1) Studentt GARCH(1,1) Normal GJR Studentt GJR
total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current

S&P 500 Johnson SU
KS-average 0.0113 0.0085 0.0086 0.0169 0.0088 0.0086 0.0090.0088 0.009 0.0088 0.0091 0.0092 0.0097 0.0094 0.0098 0.0099
KS-stdev 0.0144 0.0025 0.0024 0.0238 0.0026 0.0025 0.0026 0.0027 0.0026 0.0024 0.0027 0.0027 0.0028 0.0027 0.0028 0.0029

KS-rejections@5% 8.67% 4.67% 4.67% 16.67% 5.78% 6.00% 5.33% 6.00% 5.78% 3.33% 6.00% 8.00% 9.78% 8.00% 9.33% 12.00%
CVM-average 1.1472 0.1554 0.1608 3.1253 0.1686 0.1592 0.174 0.1726 0.1796 0.1704 0.1818 0.1867 0.2127 0.1957 0.2206 0.2218
CVM-stdev 5.8194 0.1351 0.1396 9.8033 0.1408 0.1397 0.13820.145 0.1498 0.1398 0.1587 0.1509 0.1716 0.1546 0.1811 0.1778

CVM-rejections@5% 9.33% 4.00% 5.33% 18.67% 4.67% 4.67% 4.00% 5.33% 5.78% 7.33% 4.67% 5.33% 7.56% 6.67% 6.67% 9.33%
Edgeworth

KS-average 0.0114 0.0086 0.0087 0.017 0.0107 0.0102 0.01110.0108 0.0095 0.0095 0.0095 0.0096 0.0113 0.0112 0.0113 0.0113
KS-stdev 0.0142 0.0025 0.0025 0.0235 0.0028 0.0028 0.0028 0.0029 0.0027 0.0026 0.0028 0.0028 0.003 0.0028 0.0031 0.0031

KS-rejections@5% 9.56% 6.00% 4.67% 18.00% 15.33% 11.33% 17.33% 17.33% 8.44% 8.00% 6.67% 10.67% 18.67% 14.00% 19.33% 22.67%
CVM-average 1.1322 0.1595 0.1643 3.0728 0.27 0.2354 0.29040.2844 0.2071 0.2041 0.2075 0.2096 0.3208 0.3049 0.3289 0.3287
CVM-stdev 5.7089 0.1372 0.1389 9.6171 0.175 0.1659 0.1692 0.1853 0.1703 0.1602 0.1822 0.1689 0.2293 0.2061 0.243 0.2378

CVM-rejections@5% 8.89% 4.67% 4.00% 18.00% 13.33% 9.33% 16.00% 14.67% 7.11% 6.67% 6.00% 8.67% 18.89% 13.33% 20.67% 22.67%
Euro/dollar Johnson SU

KS-average 0.0086 0.0084 0.0086 0.0087 0.0087 0.0085 0.0087 0.0087 0.0086 0.0084 0.0086 0.0087 0.0087 0.0085 0.0088 0.0087
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0026 0.0025 0.0025 0.0028 0.0025 0.0025 0.0024 0.0027 0.0026 0.0025 0.0025 0.0028

KS-rejections@5% 4.67% 4.67% 4.67% 4.67% 4.44% 3.33% 4.00%6.00% 4.44% 4.00% 4.67% 4.67% 4.89% 4.00% 4.00% 6.67%
CVM-average 0.1625 0.156 0.1617 0.1697 0.166 0.1591 0.16450.1743 0.1625 0.1561 0.1613 0.1703 0.1663 0.159 0.1654 0.1745
CVM-stdev 0.1401 0.1381 0.1411 0.1416 0.1423 0.1391 0.14040.1478 0.1401 0.1382 0.1402 0.1424 0.142 0.1398 0.1392 0.1475

CVM-rejections@5% 5.11% 4.67% 4.67% 6.00% 4.67% 4.00% 4.67% 5.33% 5.11% 4.67% 4.67% 6.00% 4.22% 3.33% 4.00% 5.33%
Edgeworth

KS-average 0.0086 0.0084 0.0086 0.0087 0.009 0.0089 0.009 0.009 0.0086 0.0084 0.0086 0.0087 0.009 0.0089 0.0091 0.0091
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0027 0.0025 0.0025 0.0029 0.0025 0.0025 0.0024 0.0027 0.0026 0.0026 0.0025 0.0028

KS-rejections@5% 5.11% 4.67% 4.67% 6.00% 6.00% 6.67% 4.00%7.33% 4.67% 4.67% 4.67% 4.67% 6.44% 6.67% 4.67% 8.00%
CVM-average 0.1626 0.1559 0.1617 0.1703 0.1784 0.1722 0.173 0.1899 0.1627 0.156 0.1612 0.171 0.1793 0.172 0.1756 0.1904
CVM-stdev 0.1402 0.1382 0.1408 0.1422 0.1474 0.1448 0.14070.1567 0.1403 0.1384 0.1395 0.1434 0.1468 0.1458 0.1396 0.1549

CVM-rejections@5% 5.11% 4.67% 4.67% 6.00% 4.89% 4.00% 4.67% 6.00% 4.89% 4.67% 4.67% 5.33% 4.44% 4.00% 4.00% 5.33%
3M Bill Johnson SU

KS-average 0.0087 0.0084 0.0087 0.0089 0.0155 0.0144 0.0158 0.0165 0.0106 0.0094 0.0112 0.0113

N/A

KS-stdev 0.0025 0.0024 0.0024 0.0025 0.0036 0.0042 0.0031 0.0031 0.003 0.0026 0.003 0.0032
KS-rejections@5% 4.73% 4.00% 4.67% 5.69% 72.81% 59.33% 78.00% 82.93% 15.37% 5.33% 18.00% 24.39%

CVM-average 0.1614 0.152 0.1645 0.169 0.6838 0.6 0.686 0.7834 0.2575 0.1948 0.2889 0.2956
CVM-stdev 0.1288 0.1233 0.1349 0.1282 0.3202 0.3659 0.265 0.2943 0.1931 0.1431 0.2116 0.2044

CVM-rejections@5% 4.26% 4.00% 4.67% 4.07% 76.83% 60.67% 81.33% 91.06% 15.60% 6.00% 18.67% 23.58%
Edgeworth

KS-average 0.0235 0.0179 0.0269 0.026 0.0636 0.0511 0.07470.0655 0.0289 0.0214 0.0335 0.0326 0.0543 0.0468 0.0627 0.0533
KS-stdev 0.0054 0.003 0.0041 0.0033 0.0123 0.0069 0.0094 0.0032 0.0071 0.0033 0.0054 0.004 0.0096 0.0065 0.0089 0.0037

KS-rejections@5% 92.44% 95.33% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
CVM-average 1.8418 0.9387 2.3913 2.273 17.198 10.55 23.43717.696 2.9942 1.4219 3.9511 3.7446 11.682 8.5839 15.458 10.857
CVM-stdev 0.8681 0.3213 0.7176 0.5385 6.6817 2.872 5.6867 1.5538 1.4736 0.4556 1.2011 0.8734 4.2451 2.5548 4.32 1.248

CVM-rejections@5% 97.64% 93.33% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

TABLE 3: Distribution tests for the approximate distributions of 5-day aggregated returns
We report the average KS distance and CVM test statistic, with asociatted standard deviations and the percentage of cases where the test statistics are greater
than the asymptotic 5% CVs(reject) for the 5-day aggregatedreturns for the S&P 500, Euro/dollar and 3-month Treasury Bills, respectively.
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Cornish-Fisher VaR Johnson SU VaR
Signif. Coverage Normal Studentt Normal Studentt Normal Studentt Normal Studentt
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR GJR

n = 5

0.10% LRuc 5.7431** 0.3828 0.3828 0.3828 5.7431** 2.5377 0.3828 0.3828
LRind - - - - - - - -
LRcc - - - - - - - -

1% LRuc 0.1819 0 0.225 0.225 0.1819 0.1818882 0.225 0.225
LRind - - - - - - - -
LRcc - - - - - - - -

5% LRuc 3.0046* 3.0046* 2.3918 4.4179** 3.0046* 3.0046* 2.3918 4.4179**
LRind 1.2069 0.2214 - 1.427 1.2069 0.2214 - 1.427
LRcc 4.2115 3.226 - 5.8449* 4.2115 3.226 - 5.8449*

10% LRuc 8.5990*** 12.008*** 2.433 4.4786** 8.5990*** 10.239*** 2.433 3.9130**
LRind 0.0009 0.008 0.0167 0.0755 0.0009 0.0334 0.0167 0.1437
LRcc 8.5999** 12.009*** 2.4497 4.5541 8.5999** 10.273*** 2.4497 4.0567

n = 10

0.10% LRuc 4.8160** 1.2684 - - 4.8160** 4.8160** 1.2688 -
LRind - - - - - - - -
LRcc - - - - - - - -

1% LRuc 1.9365 0.757 0.0909 0.0909 1.9366 0.757 0.757 0.0909
LRind - - - - - - - -
LRcc - - - - - - - -

5% LRuc 0.1703 0.4751 0.5845 0.5845 0.1703 0.4751 0.5845 0.5845
LRind 0.062 0.0122 - - 0.062 0.0122 - -
LRcc 0.2323 0.4873 - - 0.2323 0.4873 - -

10% LRuc 2.5398 5.5539** 0.0355 0.6445 2.5398 3.9140** 0.0355 0.6445
LRind 0.0394 0.552 0.2463 0.8003 0.0394 0.3182 0.2463 0.8003
LRcc 2.5792 6.1059** 0.2817 1.4448 2.5792 4.2322 0.2817 1.4448

n = 20

0.10% LRuc 2.415 2.415 - - 2.415 2.415 - -
LRind - - - - - - - -
LRcc - - - - - - - -

1% LRuc 0.3846 0.0542 0.0542 0.0542 0.3846 0.0542 0.0542 0.0542
LRind - - - - - - - -
LRcc - - - - - - - -

5% LRuc 9.4252*** 9.4252*** 0.4757 4.4388** 9.4252*** 9.4252*** 1.1278 5.9327**
LRind 0.3801 0.3801 0.6181 0.0088 0.4123 0.4123 0.2956 0.0694
LRcc 9.8054*** 9.8054*** 1.0938 4.4476 9.8376*** 9.8376*** 1.4233 6.0022**

10% LRuc 9.5294*** 11.101*** 1.6369 3.294* 9.5294*** 11.101*** 1.6369 3.294*
LRind 0.0585 0.1932 0.0232 0.2732 0.0712 0.234 0.0232 0.309
LRcc 9.5879*** 11.294*** 1.6601 3.5672 9.6006*** 11.3348*** 1.6602 3.603

TABLE 4: Coverage tests for the S&P 500
Christoffersen’s (1998) likelihood ratio tests for correct conditional coverage for the S&P500 returns at hori-
zonsh = 5, 10 and20 working days. Rejections of the null - of correct coverage - are marked with (*), (**)
and (***) for the 10%, 5% and 1% significance levels, respectively.
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Cornish-Fisher VaR Johnson SU VaR
Signif. Coverage Normal Studentt Normal Studentt Normal Studentt Normal Studentt
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR GJR

n = 5

0.10%
LRuc 0.3614 0.3614 0.3614 0.3614 0.3614 0.3614 0.3614 0.3614
LRind - - - - - - - -
LRcc - - - - - - - -

1%
LRuc 0.272 5.0233** 0.272 5.0233** 0.272 1.05 0.272 1.05
LRind - - - - - - - -
LRcc - - - - - - - -

5%
LRuc 0.0736 0.2204 0.005 0.4427 0.0736 0.2204 0.005 0.4427
LRind - - - - - - - -
LRcc - - - - - - - -

10%
LRuc 0.1555 2.3401 0.062 1.5634 0.1555 1.231 0.062 0.6818
LRind 1.7371 0.3537 1.5089 1.7885 1.7371 1.5516 1.5089 1.1266
LRcc 1.8926 2.6946 1.5709 3.3519 1.8926 2.7826 1.5709 1.8084

n = 10

0.10%
LRuc 1.2393 1.2393 1.2393 1.2393 1.2393 1.2393 1.2393 1.2393
LRind - - - - - - - -
LRcc - - - - - - - -

1%
LRuc 0.6985 0.1338 0.6985 1.2496 0.6985 0.0724 0.6985 0.1338
LRind - - - - - - - -
LRcc - - - - - - - -

5%
LRuc 0.3781 1.3211 0.3781 1.9853 0.3781 1.3211 0.3781 1.9853
LRind - 0.0187 - 0.0713 - 0.0187 - 0.0713
LRcc - 1.3397 - 2.0566 - 1.3397 - 2.0566

10%
LRuc 1.6606 5.0297** 2.1987 5.0297** 1.6606 4.2234** 2.1987 4.2234**
LRind 0.2987 0.099 0.1581 0.099 0.2987 0.216 0.1581 0.216
LRcc 1.9593 5.1287* 2.3568 5.1287* 1.9593 4.4394 2.3568 4.4394

n = 20

0.10%
LRuc - - - - - - - -
LRind - - - - - - - -
LRcc - - - - - - - -

1%
LRuc 1.694 1.694 1.694 0.3492 1.694 1.694 1.694 1.694
LRind - - - - - - - -
LRcc - - - - - - - -

5%
LRuc 0.9927 1.8334 0.9927 0.9927 0.9927 1.8334 0.9927 0.9927
LRind - - - - - - - -
LRcc - - - - - - - -

10%
LRuc 0.8303 4.9913** 1.4031 3.9112** 0.8303 4.9913** 1.4031 3.9112**
LRind 0.7843 0.0952 1.1387 2.5828 0.7843 0.0952 1.1387 2.5828
LRcc 1.6146 5.0865* 2.5419 6.4940** 1.6146 5.0865* 2.5419 6.4940**

TABLE 5: Coverage tests for the Euro/dollar
Christoffersen’s (1998) likelihood ratio tests for correct conditional coverage for the Euro/dollar returns at
horizonsh = 5, 10 and20 working days. Rejections of the null - of correct coverage - are marked with (*),
(**) and (***) for the 10%, 5% and 1% significance levels, respectively.
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Cornish-Fisher VaR Johnson SU VaR
Signif. Coverage Normal Studentt Normal Studentt Normal Studentt Normal
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR

n = 5

0.10%
LRuc 0.6245 - 0.6245 - 0.6245 0.6245 0.6245
LRind - - - - - - -
LRcc - - - - - - -

1%
LRuc 0.2191 0.0002 0.2917 1.2678 1.8122 0.2191 0.0002
LRind - - - - - - -
LRcc - - - - - - -

5%
LRuc 1.1453 2.8861* 0.0704 2.2255 1.1453 1.1453 0.0012
LRind 1.2412 0.5734 3.5535* 0.7648 1.2412 1.2412 3.0615*
LRcc 2.3865 3.4594 3.6238 2.9903 2.3865 2.3865 3.0626

10%
LRuc 1.9663 15.582*** 0.0025 12.346*** 0.5892 0.0787 0.3079
LRind 1.7918 4.5501** 0.303 6.4018** 0.8893 3.1424* 0.813
LRcc 3.7581 20.132*** 0.3055 18.748*** 1.4785 3.2211 1.1208

n = 10

0.10%
LRuc 5.6086** 1.6141 1.6141 1.6141 10.660*** 10.660*** 5.6086**
LRind - - - - - - -
LRcc - - - - - - -

1%
LRuc 0.4278 1.5452 0.4278 0.4278 3.1782* 1.5452 1.5452
LRind - - - - - - -
LRcc - - - - - - -

5%
LRuc 1.4639 1.4639 0.0003 0.376 1.4639 1.4639 0.0003
LRind 3.3584* 3.3584* 3.0584* 1.838 3.3584* 3.3584* 3.0584*
LRcc 4.8222* 4.8222* 3.0587 2.214 4.8222* 4.8222* 3.0587

10%
LRuc 3.9066** 9.0401*** 0.1942 7.864*** 1.2417 1.7781 0.1942
LRind 0.9642 3.9818** 0.1659 4.7915** 1.3039 0.9307 0.1659
LRcc 4.8708* 13.022*** 0.3601 12.656*** 2.5457 2.7088 0.3601

n = 20

0.10%
LRuc 2.8133* - 2.8133 - 2.8133* 2.8133* 2.8133*
LRind - - - - - - -
LRcc - - - - - - -

1%
LRuc 2.6323 0.7827 0.7827 0.7827 5.1822** 8.2582*** 2.6324
LRind - - - - 2.3722 - -
LRcc - - - - 7.5544** - -

5%
LRuc 1.6158 7.5402*** 0.753 2.7510* 1.6158 5.7332** 1.6158
LRind 0.2014 1.7605 0.48 1.5878 0.2014 0.5492 0.2014
LRcc 1.8173 9.3007*** 1.233 4.3388 1.8173 6.2825** 1.8173

10%
LRuc 23.070*** 10.564*** 30.7327*** 7.3220*** 3.4493* 2.447 0.9226
LRind 5.9748** 2.1677 14.9262*** 2.1151 0.9994 1.6011 1.1274
LRcc 29.045*** 12.732*** 45.6590*** 9.4372*** 4.4487 4.0481 2.05

TABLE 6: Coverage tests for the 3mo IR
Christoffersen’s (1998) likelihood ratio tests for correct conditional coverage for the 3-month Treasury Bill
returns at horizonsh = 5, 10 and20 working days. Rejections of the null - of correct coverage - are marked
with (*), (**) and (***) for the 10%, 5% and 1% significance levels, respectively.
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