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ABSTRACT

It is widely accepted that some of the most accurate prextistof aggregated asset returns are based
on an appropriately specified GARCH process. As the forduaston is greater than the frequency
of the GARCH model, such predictions either require timastonming simulations or they can be
approximated using a recent development in the GARCH titeeaviz. analytic conditional moment
formulae for GARCH aggregated returns. We demonstratettiitmethodology yields robust and
rapid calculations of the Value-at-Risk (VaR) generate@I@&ARCH process. Our extensive empiri-
cal study applies Edgeworth and Cornish-Fisher expansindslohnson SU distributions, combined
with normal and Studertt symmetric and asymmetric (GJR) GARCH processes to retlateson
different financial assets; it validates the accuracy ofaaytic approximations to GARCH aggre-
gated returns and derives GARCH VaR estimates that are stwla highly accurate over multiple
horizons and significance levels.
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1 INTRODUCTION
In an era when financial products can be extremely complehisbcated models for the density
forecasting of portfolio returns are an important topic &mademic research. Forward-looking re-
turns distributions have a plethora of applications to fodict risk assessment and allocation opti-
mization, and accurate forecasts of the entire distrilougi@ crucial if we believe that returns depart
significantly from normality.

Given the widely documented characteristics of financiaéageturns, quite complex dynamic
models are needed for predicting distributions of undegyasset returns. A salient feature is their
volatility clustering - that is, "large changes tend to béoiwed by large changes — of either sign —and
small changes tend to be followed by small changes" (Mamdteb963). Generalised autoregressive
conditional heteroscedastic (GARCH) models, introducgdhgle (1982), Bollerslev (1986) and
Taylor (1986), have proved very successful in capturing blehaviour, and they can also explain why
asset returns distributions are skewed and leptokurtic.

When aggregated returns are generated by a GARCH procegls, 603) argues in his Nobel
lecture that simulations are required to predict the gleswif the returns distribution over a time hori-
zon which is longer than the frequency of the model. Simaietiare only asymptotically exact and
it can be very time consuming to simulate aggregated GAR@tnie distributions to a satisfactory
degree of accuracy. This computational burden will redheescope for out-of-sample tests of the
predictive returns distributions. By the same token, amgfical implementation of a GARCH model
in portfolio risk assessment and/or optimization will beniied to over-night rather than intra-day
calculations.

Hence, there is a clear need for fast and accurate analyiroxipnations to the returns distribu-
tions that would otherwise need to be simulated for varioBRGH processes. This paper presents an
empirical study of the effectiveness of the modelling framek suggested by Alexander, Lazar and
Stanescu (2011) for generating GARCH aggregated retustistaitions, with particular reference to

the accuracy of lower quantiles that are used for estimdtgsrtfolio Value-at-Risk (VaRY}.

1Alexander, Lazar and Stanescu (2011), henceforth dengtélB, derived analytic formulae for the conditional
moments of forward and aggregated GJR-GARCH returns, angafd and aggregated GJR-GARCH variances, up to
order four, with a generic innovation process, thus encasipg a number of standard GARCH models. We shall utilize
only a subset of their results, viz. their formulae for thememts of the aggregated returns distribution, under just fo
standard GARCH models, namely the symmetric GARCH(1,1¢¢s6 and the asymmetric GJR-GARCH process, each
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Since the 1996 Amendment to the Basel | Accord, VaR has bed¢bestandard metric for
financial risk assessment and reporting, not only in the ntsaks that must now use VaR as a basis
for their assessment of market risk capital reserves, batialasset management, hedge funds, mutual
funds, pension funds, corporate treasury and indeed maliytevery large institution worldwide that
has dealings in the financial markets. As a result the acaditeriature on VaR is hugé.Some of
the most influential academic research concerns the use BIGBprocesses to measure VaR at the
aggregate (“top-down") level, rather than utilizing stardl(“bottom-up") VaR model for assessing a
firm’s market risk capital. A path-breaking paper by Berkiaveind O’Brien (2002) utilizes aggregate
profit and loss data from six of the world’s major banks to destrate a very clearly superior accuracy
in top-down GARCH-based VaR estimates relative to moraticahl, bottom-up VaR estimates.

Given the frequent turmoil in financial markets and the pgeuse of the VaR metric through-
out the industry, the construction of fast, accurate andyeiagplemented VaR measures is not only
timely — it is of great practical and regulatory importan@ée contribution of our paper lies in that
it applies moment-based approximation methods frequeistig in the literature and/or practice, like
the Cornish-Fisher expansion or Johnson SU distributiorg hew modellling framework, i.e. a
GARCH VaR context, thus combining the accuracy of GARCH ntloggwith the speed of these
approximation methods. Also, the paper provides rathesresite empirical tests of these approxi-
mations in a GARCH framework, using different statistieats, data samples, horizons, significance
levels and an out-of-sample period that includes the ctiogsis3

First we apply the aggregated return moment formulae of AliBitee broad market risk factors:
an equity index (S&P 500), a cross-currency pair (Euro&iplland a discount bond (3-month US
Treasury bill). Then we apply standard distribution appreation methods to these moments (the
Edgeworth expansion and a fit of the Johnson SU distribuiod)evaluate their accuracy using the

asymptotically exact simulated distributions as benchifiaBut the main focus of this paper is on

with normal and Studertterror distributions.

2A condensed literature survey is provided in Section 3. Mameprehensive reviews may be found in Alexander
(2008), Angelidis and Degiannakis (2009) and Christo&#ar&009).

3In-sample size for GARCH model parameter estimation is Edg/ef daily log returns; out-of-sample statistical tests
cover a 10-year period from 3 January 2000 to 31 December.2009

4We examine the proximity of each quasi-analytic distribatio the simulated distribution using both Kolmogorov-
Smirnov (see Kolmogorov (1933), Smirnov (1939), Masseg)pand Cramer-von Mises tests (see Cramer (1928) and
Anderson and Darling (1952)).
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the speed and accuracy of our quasi-analytic VaR predstiwhich are assessed using the coverage
tests of Christoffersen (1998). The reminder of this pap@rganised as follows: Section 2 presents
the theoretical methodology that we shall implement for @mpirical results; Section 3 reviews the
VaR literature and explains how analytic formulae for thstfiour moments of aggregated GARCH
returns can be used to approximate VaR; Section 4 presemtdata and empirical resuftsand

Section 5 concludes.

2 APPROXIMATE AGGREGATEDGARCH RETURNSDISTRIBUTIONS
Our purpose is to approximate distributions of the aggeshatturns in a GARCH framework that
capture the important characteristics of financial assetns, i.e. their volatility clustering and their
non-normal distributions. Here we show how such approxendatributions can be obtained using
analytic formulae for the first four conditional moments ARCH aggregated returns.
Consider the following generic GJR specification, intraeilby Glosten, Jagannathan and Run-
kle (1993), for the generating process of a continuouslymmmded portfolio return from time— 1

to timet, denoted;:
Tt:M+€t, Et:Zthtl/z, Zt ND(O,l),

with hy =w+ae | + ez I, + Bhq,

whereh, = V (r, |Q;_1) is the variance of the portfolio return, conditional on thérmation set
Q_y ={r_;,7 > 1}. The GARCH errot, is a disturbance process ands a sequence @fi.d. zero
mean unit variance random variables with distribution/,” is an indicator function which equals 1
if ¢, < 0 and zero otherwise. The symmetric GARCH(1,1) model can bemdéd from the above by
equating\ = 0. In our empirical results we shall allow (0, 1) to be either a standard normal or a
standardized Studentlistribution, with degrees of freedom estimated by maxintikelihood along
with the other GARCH model parameters. Thus we shall con$ale different possibilities for the
GARCH processes that are most appropriate for differerggyqd asset returns, namely the normal
and Student GJR and GARCH(1,1) models.

Denote the first four central moments of thgperiod future aggregated returns generated by the

SFor convenience, the standard statistical that undergsethesults are stated in an appendix.
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model above as:

Et (Rtn - Et (Rtn))l fOI’Z = ]_, 2, 3, 4, Whel’eRm = Z Ttis-
s=1

ALS (Theorem 1) derived exact formulae for both central aaddardized moments of the aggregated

returns. The conditional mead SZL varianceM }@L skewnes§' ,,, and kurtosig{p ,, of then-period

return are given by:

=np, My, =nh+(1—¢)" (1—¢") (hss — h)

)
[ z (22) 4538
s=1

9 —3/2
Et (Et-i-sgf—i-s—l—u)] (M}(%,Zz) )
=1 u=1

K Z By (hi,) + > Z (4E; (Sr587sra) T 6B (€71480 1 50)) 9\ —2
KR,n - S:1n n—sn—s— =t <M§2’ZL) ’
+12 3" z_: (€t+s5t+s+u5t+s+u+v)

6.
7.

. = a+ \Fy + 8, with Fy being the distribution function fab (0, 1) evaluated at zero;
. h=w(l—¢)", soify € (0,1), thenh is the steady-state variance;

B (W) 2 3B (o)) + 2B (BE,.) (B ()72, where

Ey (hips) = h+ ¢! (ht+1 — _) andFE, ( Hs) =c + (htJrl — 03) Y 4 ot
with v = ©? + (k. — 1) (@ + AFY)? + k. A2E (1 — Fy),

= (w2 + 2w<p7z) (1-— 7)_1, co = 2w (ht—i-l — ﬁ) (p— 7)_1 andcs = ¢; + cs.

0
By (er4s820p0) = 0" (onz A [ Bf(2) dz) E, (hfﬁ) wheref is thepdf of D(0, 1).

Z=—0Q

3/2
. Et (6t+38§+s+u) = TzEt <€t+8ht—{-s+u>' Where

E; (€t+8h?—{—2s+u> ~ 3¢, [(Et (hirssa))? + wip(p — 7) (B, (ht+s+u))_1/2} e E, (h?ﬁ>
2B (yra)) 9 (B (BIL2) + 2030y = 9) e (H2))

0
a=ar,+X [ 2f(2)dz

s =« (aug‘r’) + 267}) + A (2a+)) fo 2 f(2)dz +2\6 f 2f(2)dz

Z=—00 Z=—00

1/2 2
B (%) = () (15;1&32 ~7(a?) )

E, (€?+s€?+s+u) =h (1 —¢") Ey (hyys) + ek, (a+ AFy + +H;15) Ey (h?—i-s)

9 . v—1 3/2
By (St4sEthstulivstute) = Ca" By <5t+sht+8+u

Table 1 outlines the modifications to the above generic fémmneeded for the normal and Student
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Normal Student
Fo 3 3
T, 0 0
K 3 35—:2
u§5) 0
0 vl
9 9 (1/—2)3/2 N
Z:[OO 2 f (2)dz —\/; — D=3 p(i

2
0 1
5 Az s w=22 (%)
2 4\/; VR -9 (%)

TABLE 1: Parameter valuesfor the normal and Student t special cases
Note: v denotes the degrees of freedom of the Student t distribution & for the k-th moment of a Student t
distribution to exist and be finite.

GJR special cases. The normal and Stud€&ARCH(1,1) can be obtained by equatihg= 0 in the
formulae for the corresponding GJR models.

Following ALS we approximate the distribution of theperiod returns using its first four mo-
ments and three different approximation methods, i.e. tiSh-Fisher expansion, the Edgeworth
expansion and Johnson SU distributions.

Cornish and Fisher (1937) and Fisher and Cornish (1960)dl@ed an asymptotic expansion for
the quantile function of a probability distribution whosentulant§ (moments) are known in terms
of the standard normal quantile functibhen only the first few cumulants are used, one obtains an
approximation of the quantile function. The Cornish - Fishpproximation is popular in empirical
applications mainly due to its speed and relative simplicitvVhile the approximation is expected
to perform well in the vicinity of the normal, because it isaadl approximation, increasing the
order does not necessarily improve the error of the appratan. Moreover, the resulting quantile
function is not necessarily monotonic as a function of thepbability, and it suffers from tail
behaviour problems - i.e. the approximation error increa@sextreme quantilés.

Somewhat similar to the Cornish-Fisher expansion, the Wdgh expansion represents a method

of approximating a density of interest around a base densstyally the standard normal density. It

5The cumulants represent an alternative to the moments afaapility distribution; while the cumulants set is equiv-
alent to that of the moments, there are cases where stagmgablem in terms of the cumulants rather than the moments
may be preferred. The cumulants are defined by the cumulaetging function, which is equal to the natural logarithm
of the moment generating function.

Hill and Davis (1968) later generalized the expansion, hyressing the quantiles of the distribution in question in
terms of the quantiles of a base distribution, which neededhe standard normal.

8See also Jaschke (2002).
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belongs to the class of Gram-Charlier expansions (see Ghelsy(1860), Chebyshev (1890), Gram
(1883), Charlier (1905) and Charlier (1906)), being a magement of a Gram-Charlier A series.
However, Gram-Charlier A series and Edgeworth series dgeagjuivalent asymptotically; in empir-

ical applications where finite order approximations aresaered, they can differ significantly. The
Edgeworth version has the theoretical advantage of beingesalsymptotic expansion, i.e. the error
of the approximation is controlled. However, it shares tlwmotonicity and convergence problems of

the Cornish-Fisher expansion. The first few terms of the &dgi expansion are:

ol@) = 15 (2) = o () — 20 () + U2 D o0 (0 1 0 (), &

where fZ () is the second-order Edgeworth approximation of the demifyterestf,, ¢ is the

standard normal density and"” is its & derivative, and-, andx, denote the skewness and kurtosis
of f,. For our purposeg, will be the density of the normalised aggregated returns.

Finally, the third approximation method we use here, theagoh SU distribution, differs from
the previous two in that it is a proper distribution ratherfan expansion. Johnson (1949) introduced
three monotonic transformations from a variabl® a standard normal variable corresponding to
three (Johnson) distributiods.The Johnson SU distribution considered in this paper is thetm
relevant for financial applications, since it is leptokartiA random variable: is said to follow a
Johnson SU distribution i

z = ¢+ Asinh (%) )
wherez is a standard normal variable. Tuenter (2001) developedyafast algorithm for the es-
timation of the four parameters ~, A and¢. Specificly, using Tuenter’s (2001) algorithm, we are
matching the first four conditional moments of thperiod aggregated GARCH returns (detailed in
Section (2) above) to the corresponding moments of a JohBbdistribution. Although flexible,
the main disadvantage of this approach is that a Johnsons$tibdtion is not guaranteed to exist for

any set of mean, variance, skewness and (positive) excessisu

9For a characterization of the family of Johnson distribagisee also Bowman and Shenton (1983).

10Here we follow the notation of Tuenter (2001) for the fourgraeters of the Johnson SU (JSU) distribution. However,
parameters and~y of the JSU distribution should not be confused with the GIRGH parametei or the constany
used in Section 2.
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3 VALUE-AT-RISK
The a% n-day VaR of a portfolio is minus the-quantile of itsn-day returns distribution, thus it is
the loss that is anticipated witi — «)% confidence from holding an unmanaged portfolio over a
risk horizon ofn days!! Manganelli and Engle (2001) distinguish three major tyfegadk models,
according to the methods used to forecast a distributiofutare returns of the portfolio:

1. Parametric VaR models, which are mainly represented &yRiskmetrics methodology (see
J. P. Morgan, 1996), assume a particular approximation efpitrtfolio mapping function,
e.g. a linear (delta) approximation, or a quadratic (dgdema) approximation. Analytic
formulae for VaR estimates may be derived only when traetgidrametric distributions are
used for risk factor returns. But these are often unreal&std inaccurate. Instead Monte Carlo
simulation must be applied. Efficient Monte Carlo methodsawigst proposed by Glasserman,
Heidelberger and Shahabuddin (2001) and many other rémgarsince, because this type of
simulation can be extremely time-consuming, as noted below

2. Non-parametric VaR models are essentially representéistorical simulation. Perignon and
Smith (2010) note that this is the most widely-used approlaabed on a survey of major banks
around the world. In a more sophisticated system this isnofiegmented with a GARCH
model, such as in the filtered historical simulation methogyp introduced by Barone-Adesi
et al. (1998, 1999)? Alexander and Sheedy (2008) demonstrate that historigallation is
highly inaccurate without such additional filtering.

3. Semi-parametric VaR models include applications ofesre value theory (see Danielsson and
deVries (1998) for example); and applications of linear aod-linear regression quantile tech-
niques, as in Taylor (1999), Chernozhukov and Umantsevl(R@hd Engle and Manganelli
(2004). Techniques based on quasi-maximum likelihood GHRf&veloped in Bollerslev and
Woolridge (1992), also fall into this category. Other sgrarametric VaR models combine the

above approaches — see Manganelli and Engle (2001) and MaieFrey (2000).

we employ the standard notatienfor the the quantile of the aggregated returns distribyttbis should not be
confused with thex parameter of the GARCH models.
12See also Boudoukh, Richardson and Whitelaw (1998), fortanreltive filtering approach.
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The approach we propose falls into the category of parammeéiiR models, and is closely related
to a sub-stream of the academic research on VaR. As we delaivpbwe estimate VaR from al-
ternative approximations of the distribution of returnséxd on moments. Zangari (1996) was the
first to introduce a parametric method for estimating VaRedasn higher moments, which he called
Modified VaR; this can be thought of as an estimator for VaR tuarects the baseline Gaussian
VaR for skewness and kurtosis. The "correction” is doneguaiornish-Fisher expansion. Follow-
ing Zangari (1996), the Cornish-Fisher expansion was giptied for quantile estimation by Mina
and Ulmer (1999), Favre and Galeano (2002), Amenc, Mamtedind Vaissie (2003), Gueyie and
Amvella (2006), Qian (2006), Boudt, Peterson and Croux 92@hd Simonato (2010). Favre and
Galeano (2002), Amenc, Martellini and Vaissie (2003) anckydeland Amvella (2006) all use the
Modified VaR in a portfolio optimisation setting, while Qig®006) employs it in a risk budgeting
application. Mina and Ulmer (1999) compare four alterrativethods for constructing an approx-
imate delta-gamma portfolio distribution, namely Johndatributions, Cornish-Fisher expansion,
Fourier transforms (for the moment generating functiord partial Monte Carlo. Also related to this
research, Wong and So (2003) approximate the distribufi@GARCH!® aggregated returns with a
skewed Studerttdistribution based on moments and subsequently deriveraspmnding VaR mea-
sure. Their model encompasses a general GARCH(1,1) pragisgarious innovation distributions,
but it does not encompass the GJR model that is used in thes.palso, their chosen approximation
method, the skewed Studendistribution, is different from those we employ here. Bquekterson
and Croux (2009) derive a Modified conditional VaR — alsoexhkkxpected tail loss (ETL) — as an
application of the Edgeworth expansion, while Simonatdl®Considers VaR and ETL measures
derived for Cornish-Fisher and Cram-Charlier expansiortsBohnson distribution approximations,
in the context of Merton’s (1976) model.

An o% n-day VaR estimate is derived from thequantile of then-period portfolio return dis-

tribution as:
—VaRn,a,t

VaR, ot = _Ft;_t}i-n (), or equivalently as / frten (2)dz = o (3)

135ee Engle (1990), Sentana (1991) and Campbell and Hentd€es). ~
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Whereﬁt;‘tin is the timet forecast of the distribution function for returns aggregefrom timet to

timet + n, and ..., is the corresponding density function. The correspondifig & given by

—VaRn,a,t
ETLn o = _é / xft;t+n (z) dx 4)

The purpose of this section is to present analytic approxans for (3) and (4) based on the first
four moments of aggregated GARCH returns. Some of the VaRdtae (though not the ETL) are
quite well-established; indeed they have been applied ® Madelling by several authors and we
briefly reviewed the contributions of some of these authbrsra. However, they have never before
been applied in the GARCH framework. Thus, given these mdibased VaR and ETL formulae,
we use the results for the conditional moments of aggregatedns in a GARCH context to derive
analytic approximations for GARCH VaR and ETL purely in terof the estimated GARCH model
parameters.

Using (2), one can immediately write the expression for ttendon SU VaR as:

VaR/SV, = —\sinh (ZC“ 5_ 7) _¢, (5)
wherez, = 7! () is the lowera-quantile of the standard normal distribution. The formfolathe

Johnson SU ETL, derived in Simonato (2010) (and adaptedrtseiting) is:

_ . v—1 ((VaRST ¢
wherey = v + dsinh (%)

>l

Truncating the terms beyond the fourth cumulant, the egprador the Cornish-Fisher VaR as

a function of the first four standardized moments ofithegay aggregated returns is:

Trpn Kpn—3 T% N
VaREE,, = — [z + 1 (o2 1) B =9, 2 gy Zhe o2 )] ) - d)
e 6 24 36 : ’
(7)
To express the Cornish-Fisher ETL one would need to perfornmeersion of the Cornish-Fisher

expansion, which is given in terms of the quantile (or ineetistribution) function. To our knowledge,

1The definitions in (3) and (4) are stated for continuous itfistion (density) functions. Acerbi and Tasche (2002)
give definitions for VaR and ETL that also apply to discontina distribution functions.
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no such inversion was derived. One other possibility wodddintegrate the expression in (7) after
VaRCF - however such an approach is deemed to be inaccurate, a®thisiGFisher VaR is less

n,o,t?

accurate when we go further into the tail and is likely to be/meaccurate when — 0.

4 EMPIRICAL METHODOLOGY AND RESULTS
4.1 Data
The performance of our proposed quasi-analytical didfiobuforecasts and VaR methodologies is
tested using equity index (S&P 500), foreign exchange (Eattar) and interest rate (3-month Trea-
sury bill) daily data. These three series represent thrgermaarket risk types (equity, foreign ex-
change and interest rate risk, respectively) and withih ebass they represent the most important risk
factors in terms of volumes of exposures. The three datausets in this application were obtained
from Datastream and each comprise 20 years of daily data, fisi January 1990 to 31st December
20097 Figure 1 plots the daily log returns for the equity and excjearate data and the daily changes
in the interest raté® Table 2 presents the sample statistics of the empiricalngitional distribution
returns. In accordance with stylized facts on daily finah@éurns the mean of every series is not
statistically different from zero and the unconditionalatdity is highest for equity and lowest for
interest rate$! Skewness is negative and low (in absolute value) but sigmifitor all three series,
so that extreme negative returns are more likely than exrpasitive returns of the same magni-
tude, while excess kurtosis is always positive and highgpigicant, suggesting that the unconditional
distributions of the series have more probability mass enttils than the normal distribution. We
notice that the interest rate sample exhibits the mostfsgnit departures from normality, while the

. _ -rormalit among theghve analﬁze. _
Since the Euro was only introduced in 1999, the ECU/doll@hexge rate is Used for the period between 1990 and

1999.

16First differences in fixed maturity interest rates are theeent of log returns on corresponding bonds.

"The standard error of the sample mean is equal to the (sastplejard deviation, divided by sample size and we
assumed 252 trading days per year to annualize the stanelagatidn into volatility.
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(a) S&P 500 returns
0.15 ‘

01 —
0.05 — —
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-0.05 — —
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~0.15 ! ! ! | |
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(b) Euro/Dollar returns
0.04 :

0.02 -

0
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(c) 3-month Treasury Bill returns
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0.005 |- -
0 LT,,‘ ;,‘,',‘: b ‘{h‘ -
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~0.01 L L \ \ \
Jan 1990 Jan 1994 Jan 1998 Jan 2002 Jan 2006 Jan 2009

FIGURE 1: Returns The equity and exchange rate daily returns are computed edir$t differences in the
log of the S&P500 index values and Euro/dollar exchangesiatespectively. The interest rate returns are
computed as first differences in interest rate values. Alirres are computed over the period 1st January 1990
to 31st December 2009.

4.2 Empirical Methodology

Four different GARCH models, namely the baseline GARCH(&id the asymmetric GJR, each
with normal and Studenterror distributions, are estimated for each of the three tseries® The
estimation is conducted in a rolling window format, whereiadow of ten years of daily data (win-
dow size approximately 2500 observations) is rolled dailyan additional ten years. The resulting
time series of model parameters are subsequently usedrnésthe first four conditional moments
of aggregated returns based on the analytic formulae frastid®e2, from 3rd January 2000 to 31st
December 2009, for three time horizoms= 5, 10, 20 working days, respectively. For the symmetric

models — the normal and StudenGARCH(1,1) — the skewness is zero by construction. However,

18Based on the BIC and AIK information criteria, an AR(4) models used to remove the autocorrelation in the data
for the 3-month Treasury bill sample, while for the S&P 50thpte an AR(2) suffices to remove all autocorrelation in
the returns; in what follows, estimation and testing is e the residuals from these regressions for the two samples
No autocorrelation was found in the foreign exchange data.
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S&P 500 EUR/USD 3MIR

Mean 0.00022 -2E-05 -2E-05
Maximum 0.1 0.0384 0.0076
Minimum -0.0947 -0.0462 -0.0081
Volatility 0.1862 0.1 0.0101

Skewness -0.1981*** -0.0992** -0.5007***
Excess kurtosis  9.1643***  2.7136*** 28.2342***

TABLE 2: Summary statistics. The summary statistics are of the equity and exchange ralg Idg returns,
and of the daily changes in interest rates from 1990 to 20@%emsks denote significance at 0.05 (*), 0.01 (**)
and 0.001(***). The standard error of the sample mean is éqo#he (sample) standard deviation, divided by
sample size. The standard errors under the null of normaligyapproximately6,/7)*/ and (24,/7)*/*for the
skewness and kurtosis, respectively, where T is the sampleWe used 252 risk days per year to annualize
the standard deviation into volatility.

the asymmetric specifications — the normal and Stutl&IR — lead to non-zero skewness estimates.

All four models yield positive excess kurtosis for all hanis and all time series.

4.3 Distribution Tests

For the implementation of the distribution tests describedhe Appendix we combine the four
GARCH specifications (the normal and StudeiBARCH(1,1) and GJR models) with two approx-
imation methods (the Johnson SU distribution and the Edgéwexpansion) and thus have eight
alternative approximate (theoretical) distributions W@alaate and compare with the corresponding
simulated distributions (based on 10000 simulatidfAgjrom approximately 2500 sets of parameter
estimates and corresponding moments estimates, the tespedormed for 150 days from a low
volatility period (January to August 2006), 150 days fromighhvolatility period (August 2008 to
March 2009) and the last 150 observations from 2009. In Takiese periods are labelled ‘low vol’,
‘high vol’ and ‘current’ respectively. Finally, the time hipon we consider here is= 5 days.

Table 3 summarizes the results of the Kolmogorov-Smirno8)(lind Cramer - von Mises
(CVM) tests for each of the eight approximate distributi@essidered. We report the mean val-
ues and the associated standard deviations of the KS distaland CVM test statistic and also the
percentage of times when the computed test statistics vigierthan the corresponding asymptotic

5% critical value. Since we perform the tests at the 5% sicpanifte level we expect a 5% rejection

For the interest rate sample, fitting the Johnson SU digtdbwas problematic and hence, for this sample, we do
not report results for the Johnson SU StudeBdR for either the distribution tests or the VaR coveragistes
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rate. The 5% critical values are 0.0136 for the KS distanckG#a16 for the CVM test statistfC.
Although the asymptotic critical values do not apply exastlour case, the model that produces the
lowest values of the test statistic is still the best amowrgalkernatives!

The results in Table 3 generally show that the proposed mbtbesed distributions success-
fully approximate the distributions of aggregated retushsined via GARCH simulations. When
departures from normality are less significant — as in the cdighe Euro/dollar exchange rates —
both approximation methods and all GARCH models yield simaind very good results. However,
the more significant the departures from normality, the tgrethe differences between the results
produced by the two approximation methods. Thus, for the S8®Psample, the results produced by
the two approximation methods are still very similar for ttemal models and comparable for the
Studentt models. However, for the interest rate sample, the JohnEodiSribution, when it exists,
produces superior results to its Edgeworth countefaln. the great majority of cases the KS and
CVM tests agree on model rankings. While the KS test alwagkigibetter results (lower average
test statistics) when the Johnson SU distribution rathen the Edgeworth expansion is employed,
for the same GARCH model, in a few cases the CVM sometimestsligavours the Edgeworth

methodology (e.g. Normal GARCH(1,1) in the 'current’ suérpd, for the S&P 500 sample).

2OThese are asymptotic results for a test where the distoibieing tested for is continuous, fully known and generic
(no particular family of distributions assumed). Stephgr®70) derives modified statistics for the finite sample rase
however, with a sample size of 10000, these modifications@iractually needed and the asymptotic results would apply,
if the hypothetical distribution were fully specified. Hoveg, in our case this distribution is based on estimatedtesnd
hence the above mentioned critical values do not apply andowdd need to simulate the correct critical values if we were
to properly carry out the tests. Still, we report the peragatof times the test statistics are greater than the asyimpto
critical values, so that we can infer, approximately, if thgt results are at least in the vicinity of these asymptutiical
values. We also note that the results have to be interpreitbdcare since it is likely that the appropriate (simulated)
critical values for this testing exercise are lower thangkgmptotic critical values reported above.

2lWwhat we mean by "best among alternatives” here is "closettetgrespective) simulated distribution”. However,
one has to interpret the results with care since the sinulildigtribution is obviously not the same for all alternative
approximate distributions.

22For the S&P 500 sample, the percentage differences betieemlues of test statistics obtained with the Johnson SU
and the Edgeworth expansion (for the same GARCH model) aregiher than 10%, and even lower for the Euro/dollar
sample. However, the values of the distribution test siesisliffer by a factor of at least 2.5 between the Johnsoni8U a
the Edgeworth expansion for the interest rate sample.
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4.4 VaR Estimation and Backtesting

We evaluate the accuracy of the proposed VaR estimates p¥@remd 20-day risk horizons using the
coverage tests of Christoffersen (1998) described in theeAdix?®> We combine the four different
GARCH models with two approximation methods, the Johnsond&lttibution and the Cornish-
Fisher expansion, and derive the VaR estimates for each GARGdel, and for each approximation
method, and forv = 10%, 5%, 1% and 0.1%.

Tables 4 - 6 summarize the results of the likelihood ratio)(td&ts for the unconditional cov-
erage, independence and conditional coverage of preglicttervals for log returns (or, in the case
of Treasury Bill rates, absolute changes) aggregated amrezdns ofn = 5, 10 and 20 working days.
In these tables (*), (**), or (***) denote a result that is s&tically significant at 10%, 5% and 1%,
respectively, i.e. the null of correct coverage is rejectddo, if no value is reported for the indepen-
dence test, that is because there are no consecutive oitdaind obviously the models in question
pass the test.

(a) S&P 500

The results in Table 3 show that the model that performs lmeeta all horizons, significance levels
and approximation methods is the normal GJR, which incursejextions in the coverage tests for
this sample. For the 10-day horizon, the StudeGUR also performs extremely well, incurring no
rejections in the coverage tests. Also, none of the modeégested in the independence test for this
sample, across all horizons and significance levels. Fob-ti@y horizon, we notice that while there
are inter-model differences in terms of the test resultaiabd for different GARCH specifications,
the results obtained by combining the same GARCH model wifterdnt approximation methods
are either very similar (for the normal models) or slightstter better with the Johnson SU approxi-
mation. For example, for the 10% VaR estimates when a StudeARCH model is employed, the
results obtained with the Johnson SU are better (lol@f. and LR,.. test statistics) than with the
corresponding Cornish-Fisher estimates. Finally, we cgueathat the coverage tests results are in-
deed good for the proposed methodologies, bearing in metddhlese are out-of-sample, forecasting

results.

23To avoid using over-lapping observations, as this woulthtéthe independence assumption for the indicator process
in the unconditional coverage test, we use only evetli set of parameter/moments estimates, whereeither 5, 10 or
20 working days.
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(b) Euro/dollar

The results further improve for the Euro/dollar sample, shenple with the least significant non-
normality features. Now both the normal GARCH(1,1) and tbemal GJR yield no rejections in
the coverage tests, across all horizons, significancedevel approximation methods. Furthermore,
their Student counterparts also yield very few rejections. Again, nonéhefmodels is rejected in

the independence test, across all horizons and signifidaneks.

(c) 3-month Treasury Bill

The 3-month Treasury Bill sample is the one exhibiting thestpponounced non-normalities among
the three samples we analyze. As for the distribution tegtsrted above, for this sample our method-
ology performs slightly less well than it does for the oth@otsamples, especially for the longer
horizons. For the 5-day horizon we find that the normal GARTH) produces no rejections in the
coverage tests across all significance levels and apprtwimaethods. The performance of the nor-
mal GJR is also good, being only marginally rejected in theeependece test for the 5% VaR. For
the 10- and 20- day horizon, no model performs perfectly; dvax, the performance of the normal
GJR remains relatively good, especially when coupled withdohnson SU distribution. Out of the
three samples we analyze, this is the only sample for whiehnbdels are sometimes rejected in
the independence tests. Also for this sample, the supegidonmance of the Johnson SU over the
expansion method is more apparent, especially if we contpareesults obtained for the 10% VaR.
To give an example of the speed of our methodology relatidote Carlo simulation, on a PC
with Intel i5-650 (dual core) and 4Gb RAM using Excel 2010 VBAe time recorded for computing
Studentt GJR-GARCH VaR estimates for a 10-day horizon using our gaaalytic methodology
was only 0.254 seconds. By comparison, to compute the 10/BRybased on 10,000 Monte Carlo
simulation took 13 seconds. It would be greater for VaR caiops over longer horizons. Moreover,
10,000 is typically regarded as the minimum number of sithutg to be used for a passable degree

of accuracy, and the time would be extrapolated linearljhaswumber of simulations increases.
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5 CONCLUSIONS
This paper demonstrates empirically that approximateeggged GARCH return distributions can
be accurately constructed based on a number of alterngip@xdmation methods. Subsequently,
we focused on quasi-analytic GARCH VaR measures consttdcten analytic formulae for higher
moments and the accuracy of our results shows that timedoting simulations are no longer needed
for GARCH VaR estimation.

Based on their occurrence in the related literature and eriehsibility of obtaining fast, ana-
lytical formulae for the distribution function and/or thesamciated VaRs and ETLs, we selected three
alternative approximation methods based on analytic mésneh comprehensive testing exercise
used three different samples on three major sources of maske- equity (S&P 500), foreign ex-
change (Euro/dollar) and interest rate risk (3-month Tugasill). We first tested how close the
approximate distributions constructed using the JohnsémliStribution and the Edgeworth expan-
sion are to their simulated counterparts. Consistentlylgesults were obtained for the S&P 500 and
the Euro/dollar exchange rate, but the Johnson SU is sugderithe T-Bill where non-normalities
are highly significant.

We then tested the accuracy of our methodology for VaR estimaising the likelihood ratio
tests for conditional coverage, proposed by Christoffed®©98). Here we combine the Cornish-
Fisher expansion and the Johnson SU distribution with foMRGH specifications (normal and Stu-
dentt GARCH(1,1) and GJR) which results in eight alternative Vadeis to test and compare. VaR
is estimated at four significance levels (0.1%, 1%, 5%, ar®d)l@nd for three different time horizons
(5, 10 and 20 days). Our quasi-analytic GARCH VaR estimatesatremely accurate, especially
for the S&P 500 and Euro/dollar samples where departures frermality are less significant. When
models are rejected in the statistical testing, it is gdlyedae to inappropriate unconditional cov-
erage and very rarely due to rejections in the independezsts. t In fact, especially at the higher
confidence levels, the models very often yield no conseewivlations. The results are even more
remarkable if we consider that the analysis is entirelyaftdgample and that the testing period (2000-
2009) contains the Dotcom "bubble burst’ (2000) and out eftén years of out-of-sample data three

years cover the current financial crisis (2007-2009).
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APPENDIX: EVALUATION METHODS
We first investigate whether the proposed approximateilligions provide an adequate representa-
tion of the conditional distributions of aggregated retur8ince these distributions are not observable,
not even ex-post, we use simulated distributions as progpscifically, we test whethédt,, = £,
where F},, is the cumulative distribution functiorcdf) for the approximate distribution of aggre-
gated returns constructed using the first four conditiona@nts and the Edgeworth expansion or
Johnson SU distribution approximation methods, &hds the simulateadf for the n-day GARCH
aggregated returnsty is given by the step-function of the samplg; (x;) = T4, wherex; with
i € {1,2,...,T}isthe increasingly ordered simulated sampkenumber of returns less than or equal
with z;, andT is the sample size (humber of simulations).

To test whethert;,,, = F;, we employ two well known distribution tests: the Kolmogetro
Smirnov (KS), proposed by Kolmogorov (1933), Smirnov (193Scheffe (1943) and Wolfowitz
(1949) and the Cramer - von Mises (CVM), proposed by Cram@eg§)?*. The KS test statis-
tic is given by: KS= +/TD, whereD is the maximum distance between the two distributions,

i.e. D = max|F, (z) — F, ()|, whereas the CVM (onw?) criterion is defined as: CVM=

T [ (Fy (x) — F (z))dF,, (z). For practical implementations and for an (increasinglsjeoed

sample, simpler variants of the the KS and CVM test staigtre given by:

1—1 1
KS = \/Tlrgg% {max {Fm (x;) — T Fn (CCZ)] } ;
T . 2
20— 1 1
CVM_ZlFm(xZ-)— o7 } + o

i=1
Finally, these statistics only have standard distribugiibthe distribution under the null hypothesis is

entirely pre-specified, but in our case thg distribution relies on estimated parameter values so the
theoretical critical values are no longer applicable.

To evaluate the accuracy of our quasi-analytic GARCH VaR pmyathe statistical tests based
on VaR exceedances that have become standard in the appkediéil economics literature: the
coverage tests for VaR accuracy of Christoffersen (1998) @hers. The LR test, introduced by
Kupiec (1995) and extended by Christoffersen (1998), istibst frequently used statistical tool for

evaluating the performance of VaR models. Kupiec (1995ppsed two likelihood ratio (LR) tests:

24For generalizations of both the KS and CVM tests see AndeasdrDarling (1952)
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one based on times until the first failure (TUFF) and anotlietdst based on the proportion of failures
(PF). However, as Kupiec himself acknowledges, both testd €specially the TUFF version) have
relatively low power in small samples. Hence, unless a laggeple is available for model assessment
purposes, these LR tests will have little power in deemingR Methodology inappropriate. Kupiec's
(1995) PF test was later extended by Christoffersen (1998hristoffersen’s conditional coverage

LR test LR....) asserts that a good VaR model is one that produces a seriediadtor functions

T T
{Itva}tzl = {IRm<—VaRn,a,t }tzl

which are Bernoulli¢) i.i.d. regardless of whethek,, is serially correlated and/or heteroskedastic.
Christoffersen (1998) proved that:

LR..o = LRyco + LRing.a
whereLR,.., tests for the correct unconditional coverage, given {H@}tle is independent, while
LR;q.. tests for the independence of this sefedde also derives the following test statistics and

their respective distributions under the null to make thecepts operational:

1 _ Nno;a Ni;a
e =-((122)(2)") v

1 — 7o, nOO;a“l‘nlO;a,]Tn.Ol;a"‘nll;a
( 2,04) 20 - X2(1)

T00; n01; n10; N1l0
1- 7T01§04> aﬂ-Ol;a (1 - 7T11§04> Oéﬂ-ll;a

LRind;a = —2In <<
LRcc;a = LRuc;a + LRind;a ~ X2(2)

where the ML estimates of the test statistidsR,,c.q, L Ring.o, aNdLR,..,, - are obtained for:

T A T
~ 7 ~ ~ ~ Lo A 7
Nia = E [t,a; Np;a = T — Nias Ta = T Nij.a = E Jij;t;a
t=1 t=1
~ o No1;a oA o N11;a oA o no1;a + N11;a
Tl = = ;v TMla = ;o T20 =

100 + o100 N10;a + N11;a N00;a + Nn10;a + No1;a + N11;a

25Christoffersen (1998) actually proposes a very generatlehfsee approach to evaluating interval forecasts; \alue
at-Risk forecasting is in effect a special case of interged€asting, where the forecasting interval is one-sideatedver,
although developed in a VaR context, Kupiec’s test is narieed to evaluating VaR models either: it can as well be
applied to evaluating interval forecasts: the test for untittonal coverage proposed by Christoffersen (1998) s
Kupiec’s PF test.

260ne drawback of Christoffersen’s (1998) methodology is théependence of failures is only tested against a first
order Markov dependence; hence the LR test for independamgmsed by Christoffersen is unable to reject a VaR
methodology as being inappropriate even if the failureeseeixhibits some sort of dependence, but this is not of first
order Markov type. Christoffersen and Diebold (2000) anen@nts and Taylor (2003) generalize this. However, their
approach is also not flawless, since the practical impleatiomtestimation of their regression based testing praeeidu
often troublesome, especially for extreme quantile egtésia
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ft,a - I<Ttn < _VaRn,a,t); jz'j;t;a = I<jt—1,a =1 ft,a = j)7 Za] = 07 1

whereT is the sample size and, are the sample realizations of the random varidh)e

LR,.. is essentially a simple hypothesis test: the null hypothissihat the difference between
the empirical exceedance rate and the desired levslzero?’ This null is then tested against the
alternative that the exceedance rate is significantly mighéower than the desired. The test will
thus discard methods as being inappropriate either bet¢hegéend to produce too little or too few
exceedances, regardless of their timing. By also taking actount the clustering of exceedances,
as well as the number of times the VaR is exceedefd,.., is a joint test of correct coverage and

independence of hits, i.e. correct conditional coverage.

27An exceedance occurs when the return is lower than minus VaR.
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Normal GARCH(1,1) StudertGARCH(1,1) Normal GJR StudehGJR
total low vol high vol current total lowvol highvol current otal lowvol highvol current total low vol high vol current
S&P 500 Johnson SU
KS-average 0.0113 0.0085 0.0086 0.0169 0.0088 0.0086  0.0@PO088 0.009 0.0088 0.0091 0.0092 0.0097 0.0094 0.0098 99.00
KS-stdev 0.0144 0.0025 0.0024 0.0238 0.0026 0.0025 0.0026002® 0.0026 0.0024 0.0027 0.0027 0.0028 0.0027 0.0028 29.00
KS-rejections@5% 8.67% 4.67% 4.67% 16.67% 5.78% 6.00% 9.336.00% 5.78% 3.33% 6.00% 8.00% 9.78% 8.00%  9.33% 12.00%
CVM-average 1.1472 0.1554 0.1608 3.1253 0.1686 0.1592 40.170.1726 0.1796 0.1704 0.1818 0.1867 0.2127 0.1957 0.22082218.
CVM-stdev 5.8194 0.1351 0.1396 9.8033 0.1408 0.1397 0.1382.145 0.1498 0.1398 0.1587 0.1509 0.1716 0.1546 0.1811 78.17
CVM-rejections@5% 9.33% 4.00% 5.33% 18.67% 4.67% 4.67% 0%.0 533% 578% 7.33% 4.67% 533% 7.56% 6.67% 6.67% 9.33%
Edgeworth
KS-average 0.0114 0.0086 0.0087 0.017 0.0107 0.0102 0.01@D108 0.0095 0.0095 0.0095 0.0096 0.0113 0.0112 0.0113 118.0
KS-stdev 0.0142 0.0025 0.0025 0.0235 0.0028 0.0028 0.00280029 0.0027 0.0026 0.0028 0.0028 0.003 0.0028 0.0031 D.003
KS-rejections@5% 9.56% 6.00% 4.67% 18.00% 15.33% 11.33%33% 17.33% 8.44% 8.00% 6.67% 10.67% 18.67% 14.00% 19.33%67%22
CVM-average 1.1322 0.1595 0.1643 3.0728 0.27 0.2354  0.29042844 0.2071 0.2041 0.2075 0.2096 0.3208 0.3049 0.3289 28D.3
CVM-stdev 57089 0.1372 0.1389 9.6171 0.175 0.1659 0.16921853 0.1703 0.1602 0.1822 0.1689 0.2293 0.2061 0.243  8.237
CVM-rejections@5% 8.89%  4.67%  4.00% 18.00% 13.33% 9.33% .00P6 14.67% 7.11% 6.67% 6.00% 8.67% 18.89% 13.33% 20.67%6722.
Euro/dollar Johnson SU
KS-average 0.0086 0.0084 0.0086 0.0087 0.0087 0.0085 1D.008.0087 0.0086 0.0084 0.0086 0.0087 0.0087 0.0085 0.008808D.
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0026 0.0025 0.00250028 0.0025 0.0025 0.0024 0.0027 0.0026 0.0025 0.0025 28.00
KS-rejections@5%  4.67% 4.67% 4.67% 4.67% 4.44% 3.33% 4.00%00% 4.44% 4.00% 4.67% 4.67% 4.89% 4.00% 4.00% 6.67%
CVM-average 0.1625 0.156 0.1617 0.1697 0.166 0.1591 0.16461743 0.1625 0.1561 0.1613 0.1703 0.1663 0.159 0.1654 48.17
CVM-stdev 0.1401 0.1381 0.1411 0.1416 0.1423 0.1391 0.14@1478 0.1401 0.1382 0.1402 0.1424 0.142 0.1398 0.1392 78.14
CVM-rejections@5% 5.11% 4.67% 4.67% 6.00% 4.67% 4.00% %.67533% 5.11% 4.67% 4.67% 6.00% 4.22% 3.33% 4.00% 5.33%
Edgeworth
KS-average 0.0086 0.0084 0.0086 0.0087 0.009 0.0089 0.009.0090 0.0086 0.0084 0.0086 0.0087 0.009 0.0089 0.0091 0.0091
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0027 0.0025 0.00250029 0.0025 0.0025 0.0024 0.0027 0.0026 0.0026 0.0025 28.00
KS-rejections@5% 511% 4.67% 4.67% 6.00% 6.00% 6.67% 4.00%33% 4.67% 4.67% 4.67% 4.67% 6.44% 6.67% 4.67% 8.00%
CVM-average 0.1626 0.1559 0.1617 0.1703 0.1784 0.1722 30.170.1899 0.1627 0.156 0.1612 0.171 0.1793 0.172 0.1756 49€.190
CVM-stdev 0.1402 0.1382 0.1408 0.1422 0.1474 0.1448 0.14@1567 0.1403 0.1384 0.1395 0.1434 0.1468 0.1458 0.1396 549.1
CVM-rejections@5% 5.11% 4.67% 4.67% 6.00% 4.89% 4.00% %.67 6.00% 4.89% 4.67% 4.67% 533% 4.44% 4.00% 4.00% 5.33%
3M Bill Johnson SU
KS-average 0.0087 0.0084 0.0087 0.0089 0.0155 0.0144 ®.016.0165 0.0106 0.0094 0.0112 0.0113
KS-stdev 0.0025 0.0024 0.0024 0.0025 0.0036 0.0042 0.00310030 0.003 0.0026 0.003 0.0032
KS-rejections@5%  4.73% 4.00% 4.67% 5.69% 72.81% 59.33%0098. 82.93% 15.37% 5.33% 18.00% 24.39% N/A
CVM-average 0.1614 0.152 0.1645 0.169 0.6838 0.6 0.686 308.780.2575 0.1948 0.2889 0.2956
CVM-stdev 0.1288 0.1233 0.1349 0.1282 0.3202 0.3659 0.265.2948 0.1931 0.1431 0.2116 0.2044
CVM-rejections@5% 4.26%  4.00% 4.67% 4.07% 76.83% 60.67%.38% 91.06% 15.60% 6.00% 18.67% 23.58%
Edgeworth
KS-average 0.0235 0.0179 0.0269 0.026 0.0636 0.0511 0.07@0655 0.0289 0.0214 0.0335 0.0326 0.0543 0.0468 0.0627 538.0
KS-stdev 0.0054 0.003 0.0041 0.0033 0.0123 0.0069 0.00940032. 0.0071 0.0033 0.0054 0.004 0.0096 0.0065 0.0089 0.0037
KS-rejections@5%  92.44% 95.33%  100% 100% 100% 100% 100% %100100%  100% 100% 100% 100% 100% 100% 100%
CVM-average 1.8418 0.9387 2.3913 2.273 17.198 10.55 23.437.696 2.9942 1.4219 3.9511 3.7446 11.682 8.5839 15.458 8570.
CVM-stdev 0.8681 0.3213 0.7176 0.5385 6.6817 2.872 5.68675538 1.4736 0.4556 1.2011 0.8734 4.2451 2.5548 4.32 1.248
CVM-rejections@5% 97.64% 93.33%  100% 100% 100% 100% 100% 0%10 100%  100% 100% 100% 100% 100% 100% 100%

TABLE 3: Didtribution tests for the approximate distributions of 5-day aggregated returns
We report the average KS distance and CVM test statistib, agibciatted standard deviations and the percentage okoakere the test statistics are greater
than the asymptotic 5% CVs(reject) for the 5-day aggregat@atns for the S&P 500, Euro/dollar and 3-month TreasurljBrespectively.
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Cornish-Fisher VaR Johnson SU VaR
Signif. Coverage Normal Student Normal Student Normal Student Normal Student
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH]j GJR GJR
n=>5
0.10% LRuc 5.7431* 0.3828 0.3828  0.3828 5.7431** 2.5377 3828 0.3828
LRind - - - - - - - -
LRcc - - - - - - - -
1% LRuc 0.1819 0 0.225 0.225 0.1819 0.1818882 0.225 0.225
LRind - - - - - - - -
LRcc - - - - - - - -
5% LRuc 3.0046* 3.0046* 2.3918 4.4179* 3.0046* 3.0046* 218  4.4179*
LRind 1.2069 0.2214 - 1.427 1.2069 0.2214 - 1.427
LRcc 4.2115 3.226 - 5.8449* 4.2115 3.226 - 5.8449*
10% LRuc 8.5990*** 12.008*** 2.433  4.4786**  8.5990*** 1030%+* 2.433  3.9130**
LRind 0.0009 0.008 0.0167 0.0755 0.0009 0.0334 0.0167 @.143
LRcc 8.5999** 12.009*** 2.4497 4.5541 8.5999** 10.273*** 2497 4.0567
n =10
0.10% LRuc 4.8160** 1.2684 - - 4.8160** 4.8160** 1.2688 -
LRind - - - - - - - -
LRcc - - - - - - - -
1% LRuc 1.9365 0.757 0.0909  0.0909 1.9366 0.757 0.757 0.0909
LRind - - - - - - - -
LRcc - - - - - - - -
5% LRuc 0.1703 0.4751 0.5845 0.5845 0.1703 0.4751 0.5845 84B.5
LRind 0.062 0.0122 - - 0.062 0.0122 - -
LRcc 0.2323 0.4873 - - 0.2323 0.4873 - -
10% LRuc 2.5398 5.5539** 0.0355  0.6445 2.5398 3.9140%* 693 0.6445
LRind 0.0394 0.552 0.2463  0.8003 0.0394 0.3182 0.2463  B.800
LRcc 2.5792 6.1059** 0.2817 1.4448 2.5792 4.2322 0.2817 4484
n =20
0.10% LRuc 2.415 2.415 - - 2.415 2.415 - -
LRind - - - - - - - -
LRcc - - - - - - - -
1% LRuc 0.3846 0.0542 0.0542  0.0542 0.3846 0.0542 0.0542 542.0
LRind - - - - - - - -
LRcc - - - - - - - -
5% LRuc 9.4252%** 9.4252%** 0.4757 4.4388**  9.4252*** 9.43D*** 1.1278 5.9327**
LRind 0.3801 0.3801 0.6181  0.0088 0.4123 0.4123 0.2956 9@.06
LRcc 9.8054*** 9.8054*** 1.0938 4.4476 9.8376*** 9.8376*  1.4233 6.0022**
10% LRuc 9.5294*** 11.101%** 1.6369 3.294* 9.5294*** 11.16** 1.6369 3.294*
LRind 0.0585 0.1932 0.0232  0.2732 0.0712 0.234 0.0232 0.309
LRcc 9.5879*** 11.294%** 1.6601  3.5672 9.6006*** 11.3348% 1.6602 3.603

TABLE 4: Coverage tests for the S& P 500
Christoffersen’s (1998) likelihood ratio tests for cort@onditional coverage for the S&B)0 returns at hori-
zonsh = 5, 10 and 20 working days. Rejections of the null - of correct coveragee-raarked with (*), (**)
and (***) for the 10%, 5% and 1% significance levels, respesly.
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Cornish-Fisher VaR Johnson SU VaR
Signif. Coverage Normal Student Normal Student Normal Student Normal Student
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH] GJR GJR
n=>5
LRuc 0.3614 0.3614 0.3614 0.3614 0.3614 0.3614 0.3614  0.361
0.10% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.272 5.0233** 0.272  5.0233** 0.272 1.05 0.272 1.05
1% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.0736 0.2204 0.005 0.4427 0.0736 0.2204 0.005 0.4427
5% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.1555 2.3401 0.062 1.5634 0.1555 1.231 0.062 0.6818
10% LRind 1.7371 0.3537 1.5089 1.7885 1.7371 1.5516 1.5089 66.12
LRcc 1.8926 2.6946 1.5709  3.3519 1.8926 2.7826 1.5709 4.808
n =10
LRuc 1.2393 1.2393 1.2393 1.2393 1.2393 1.2393 1.2393 3.239
0.10% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.6985 0.1338 0.6985  1.2496 0.6985 0.0724 0.6985 8.133
1% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.3781 1.3211 0.3781  1.9853 0.3781 1.3211 0.3781  3.985
5% LRind - 0.0187 - 0.0713 - 0.0187 - 0.0713
LRcc - 1.3397 - 2.0566 - 1.3397 - 2.0566
LRuc 1.6606 5.0297** 2.1987 5.0297* 1.6606 4.2234** 2.798 4.2234**
10% LRind 0.2987 0.099 0.1581 0.099 0.2987 0.216 0.1581 0.216
LRcc 1.9593 5.1287* 2.3568 5.1287* 1.9593 4.4394 2.3568 394
n =20
LRuc - - - - - - - -
0.10% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 1.694 1.694 1.694 0.3492 1.694 1.694 1.694 1.694
1% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.9927 1.8334 0.9927  0.9927 0.9927 1.8334 0.9927  0.992
5% LRind - - - - - - - -
LRcc - - - - - - - -
LRuc 0.8303 4.9913* 1.4031 3.9112* 0.8303 4.9913* 1.403 3.9112*
10% LRind 0.7843 0.0952 1.1387  2.5828 0.7843 0.0952 1.1387 2858
LRcc 1.6146 5.0865* 2.5419 6.4940** 1.6146 5.0865* 2.5419.4980**

TABLE 5: Coverage tests for the Euro/dollar

Christoffersen’s (1998) likelihood ratio tests for cortezonditional coverage for the Euro/dollar returns at
horizonsh = 5, 10 and 20 working days. Rejections of the null - of correct coveragee-raarked with (*),
(**) and (***) for the 10%, 5% and 1% significance levels, resgively.
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Cornish-Fisher VaR

Johnson SU VaR

Signif. Coverage Normal Student Normal Student Normal Student Normal
level test GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCHj GJR
n=>5
LRuc 0.6245 - 0.6245 - 0.6245 0.6245 0.6245
0.10% LRind - - - - - - -
LRcc - - - - - - -
LRuc 0.2191 0.0002 0.2917 1.2678 1.8122 0.2191 0.0002
1% LRind - - - - - - -
LRcc - - - - - - -
LRuc 1.1453 2.8861* 0.0704 2.2255 1.1453 1.1453 0.0012
5% LRind 1.2412 0.5734 3.5535* 0.7648 1.2412 1.2412 3.0615*
LRcc 2.3865 3.4594 3.6238 2.9903 2.3865 2.3865 3.0626
LRuc 1.9663 15.582*** 0.0025 12.346*** 0.5892 0.0787 0.807
10% LRind 1.7918 4.5501** 0.303 6.4018** 0.8893 3.1424* 0.813
LRcc 3.7581 20.132*** 0.3055 18.748*** 1.4785 3.2211 1.820
n =10
LRuc 5.6086** 1.6141 1.6141 1.6141 10.660%** 10.660**  BB6**
0.10% LRind - - - - - - -
LRcc - - - - - - -
LRuc 0.4278 1.5452 0.4278 0.4278 3.1782* 1.5452 1.5452
1% LRind - - - - - - -
LRcc - - - - - - -
LRuc 1.4639 1.4639 0.0003 0.376 1.4639 1.4639 0.0003
5% LRind 3.3584* 3.3584* 3.0584* 1.838 3.3584* 3.3584* 3.0584
LRcc 4.8222* 4.8222* 3.0587 2.214 4.8222* 4.8222* 3.0587
LRuc 3.9066** 9.0401*** 0.1942 7.864*** 1.2417 1.7781 042
10% LRind 0.9642 3.9818** 0.1659 4.7915* 1.3039 0.9307 0.1659
LRcc 4.8708* 13.022*** 0.3601 12.656*** 2.5457 2.7088 086
n = 20
LRuc 2.8133* - 2.8133 - 2.8133* 2.8133* 2.8133*
0.10% LRind - - - - - - -
LRcc - - - - - - -
LRuc 2.6323 0.7827 0.7827 0.7827 5.1822** 8.2582*** 2.6324
1% LRind - - - - 2.3722 - -
LRcc - - - - 7.5544* - -
LRuc 1.6158 7.5402%** 0.753 2.7510* 1.6158 5.7332* 1.6158
5% LRind 0.2014 1.7605 0.48 1.5878 0.2014 0.5492 0.2014
LRcc 1.8173 9.3007*** 1.233 4.3388 1.8173 6.2825** 1.8173
LRuc 23.070%** 10.564%**  30.7327*** 7.3220*** 3.4493* 2.47 0.9226
10% LRind 5.9748** 2.1677 14.9262*** 2.1151 0.9994 1.6011 1742
LRcc 29.045%** 12.732%** 45.6590***  9.4372*** 4.4487 4.081 2.05

TABLE 6: Coverage tests for the3mo IR
Christoffersen’s (1998) likelihood ratio tests for cortezonditional coverage for the 3-month Treasury Bill
returns at horizons: = 5, 10 and 20 working days. Rejections of the null - of correct coveragee-raarked

with (*), (**) and (***) for the 10%, 5% and 1% significance lels, respectively.
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