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ABSTRACT

We model investment opportunities with a single source of uncertainty, i.e. the market price
of the investment. Investment cost can be predetermined or perfectly correlated with the
market price. The common paradigm for risk-neutral real-option pricing is a special case en-
compassed within our general framework, and we analyse the relationship between standard
real option prices and the more general risk-averse real option values. Numerical examples
illustrate how these general values depend on the frequency of decision opportunities, the
investor’s risk tolerance and its sensitivity to wealth, his expected return and volatility of the
underlying asset, and the price of the asset relative to initial wealth. Specific applications to
real estate include property investment under ‘boom-bust’ or mean-reverting price scenarios,
and buy-to-let or land-development opportunities.
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1 Introduction

The term ‘real option’ is commonly applied to a decision opportunity for which the investment

cost is predetermined, and the vast majority of the literature assumes the underlying asset is

traded in a complete or partially complete market so that all (or at least the important) risks

are hedgeable. Real options are typically regarded as tradable contracts with predetermined

strikes, the standard risk-neutral valuation (RNV) principal is invoked, most commonly in a

continuous-time setting, and the mathematical problem is no different to pricing an American

option under the risk-neutral measure.

However, a financial option is only a special case of real option. The original definition

of a real option, first stated by Myers (1977), is a decision opportunity for a corporation or an

individual. It is a right, rather than an obligation, whose value is contingent on the uncertain

price(s) of some underlying asset(s). The assumptions of hedgeable risks and predetermined

strike are clearly inappropriate for many real options, particularly those in real estate, research

and development or mergers and acquisitions. These markets are fundamentally different from

the market for a liquid financial asset. Anything traded in a liquid market with no restrictions,

e.g. a share, can always be transacted at the market price so an option to do so has no intrinsic

value. By contrast, the market for the underlying of a real option is very often incomplete, the

underlying investment can be highly illiquid and the transacted price is typically negotiated

between individual buyers and sellers, e.g. via an auction. In this case Grasselli (2011) has

proved that the real option to invest does have an intrinsic value, but is purely subjective and,

unlike the premium on a financial option, it has no absolute accounting value. It represents

the dollar amount, net of financing costs, that the investor should receive for certain to obtain

the same utility value as the expected utility of the risky investment.

Real option values allow alternative investment opportunities to be ranked, just as

financial investments are ranked using risk-adjusted performance measures. Thus, a phar-

maceutical company may compare the values of real options to develop alternative products,

or an oil exploration company may compare the values of drilling in different locations, or a

private property development company may compare the values of opportunities to buy and

develop plots of land in different locations.

This paper introduces a general decision-tree approach for determining the value of an

investment opportunity and its optimal exercise path, in market that need not be complete

because the solution is derived via maximization of expected utility. We endow the decision

maker with a utility from the hyperbolic absolute risk aversion (HARA) class, introduced by

Mossin (1968) and Merton (1971). Risk-neutrality is considered as a special case correspond-

ing to infinite risk tolerance, i.e. a linear utility. Given the flexible utility structure we do not

Copyright c© 2012 Alexander and Chen 1



ICMA Centre Discussion Papers in Finance DP2012-04

focus on analytic solutions, available only in the exponential case, and neither do we consider

expansion approximations, preferring instead the direct numerical implementation of a very

flexible framework.

We develop an approach that is both general in scope and flexible in its application

to a wide range of investment or divestment decisions. Several numerical examples focus on

real estate investments, from large-scale land development to individual residential property

transactions. When we assume none of the risk of the project can be hedged in a financial

market our framework is applicable to decisions faced by private companies, charitable entities

or individuals. Such decisions can have profound implications for the decision maker’s welfare.

Housing may represent a major component of individual wealth and should not be viewed

simply in expected net present value terms, nor should all uncertainties be based on systematic

risk because they are largely unhedgeable. Private development companies may be generating

returns and risks that have a utility value that is specific to the owners’ outlook. Similarly,

charitable entities such as housing trusts may have objectives that are far removed from

wealth maximisation under risk-neutrality.

We provide a coherent analytical framework for computing the relative values of different

real options under discrete decisions, for example at a monthly or quarterly meeting of the

board of directors. The decision maker’s utility function is applied to value every opportunity

but the decision maker’s subjective views about the evolution of the market price and any

future rents or development costs are specific to each location. A variety of processes for a

forward market price under the investor’s (subjective) physical measure could be employed.

Here we consider only one-factor models: geometric Brownian motion (GBM), mean-reversion

and boom-bust market price scenarios. Extensions to jumps in prices and stochastic volatility

are an interesting topic for further research.

An option strike can be predetermined, as is commonly assumed in the real option

literature, or the investment cost can be stochastic, but then it will be perfectly correlated

with the market price because we consider only one source of uncertainty. In the latter case

the problem falls squarely into the realm of decision analysis. Indeed, the standard risk-

neutral option price will be zero, yet a risk-averse investor would still place a positive value

on the decision opportunity. Assumptions about the structure of investment costs turn out

to be crucial for the ranking of alternative opportunities and for this ranking’s sensitivity

analysis to the investor’s views on market prices and cash flows.

Standard risk-neutral real option prices are captured within our approach on assuming

that the investment cost is predetermined, the forward asset price follows a GBM with total

return equal to the risk-free rate, the investor applies a linear utility (equivalently, he has
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zero risk aversion, whatever his wealth) and the investment decision may be taken at any

point in time. More generally, in an incomplete market the optimal decision path and the

corresponding option value depend not only on the decision maker’s risk preferences, but also

on his subjective views about (a) the price he would pay or receive for the investment in future,

and (b) the cash flows arising from owning the investment, which may be positive (e.g. rents

from a buy-to-let apartment block or from a commercial office), negative (e.g. construction

costs in an on-going development) or zero (for a self-occupied residential property).

Our general framework allows real option prices based on risk-neutral valuation to be

compared with the values attributed by risk-averse investors in incomplete markets. We also

answer several questions that have not previously been addressed in the literature, e.g. what

is the effect of the investor’s risk preferences (and especially, how his risk tolerance changes

with wealth) on the ranking of different opportunities? How is this ranking influenced by the

structure of the cash flows, or by the cost of the investment relative to the initial wealth of

the investor? If the fixed-strike assumption is unlikely to be valid in practice, how does this

assumption influence the option value? And how does the value change with the frequency

of decision opportunities?

We proceed follows: Section 2 places our work in the context of the real options litera-

ture; Section 3 describes the model; Section 4 analyses the relationship between risk-neutral

real option prices and different risk-averse option values and explains how these values are

influenced by the frequency of decision opportunities, the relative cost of the investment, and

the subjective views on expected return and risk. Section 5 analyses several real estate real

options including buy-to-let and land development. We explain how the ranking of alterna-

tive investment opportunities depends on the structure of the cash flows, the investor’s risk

preferences – especially how his risk tolerance changes with wealth – and his views on market

prices, including mean-reverting and ‘boom-bust’ price scenarios as well as standard GBM.

Throughout, the standard risk-neutral real option price is computed as a special case, for

comparison. Section 6 summarises and concludes.

2 Relevance to the Literature

Most of the literature on real options focuses on opportunities to enter a tradable contract

with predetermined strike on an asset traded in a complete market (i.e. the real option’s

pay-off distribution can be replicated using tradable assets, so that all risks are hedgeable)

and where the decision opportunity can be exercised continuously at any time over an infinite

horizon. In this setting the option has the same value to all investors (Harrison and Kreps,

1981) and thus can be valued as if the investor is risk neutral, just like a financial option.
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This strand of the literature regards a real option as a tradable contract, usually with a fixed

or predetermined strike and a finite horizon.1 As a result of applying the RNV principle there

is a unique market price for the real option that is positively related to the volatility of the

underlying asset.

In practice many decision opportunities encompassed by Myer’s original definition are

not standardized, tradable securities and their risks are only partially hedgeable, if at all. For

instance, if an oil exploration company must decide whether to drill in location A or location

B, its views about the benefits of drilling in each location will depend on their subjective

beliefs about the market prices of oil in the future, as well as their risk preferences. And when

a pharmaceutical company decides which drug to research and develop, both the research

costs and the subsequent profits tend to be positively correlated with each drug’s potential

market price. In this incomplete market setting there is no unique value for a real option; it

will be specific to the investor, depending on his subjective views about the stochastic costs

and benefits, the form of his utility function and how his risk tolerance evolves with wealth.

Importantly, and by contrast with the risk-neutral approach, a risk-averse investor’s valuation

of a real option may decrease as the underlying asset volatility increases, i.e. as the riskiness

of the investment increases.

Closed-form, continuous-time, deterministic-strike real option values in incomplete or

partially complete markets have been considered for decision makers with an exponential

utility by Henderson (2002, 2007), Miao and Wang (2007) and Grasselli (2011). When the

underlying asset is correlated with a market price Henderson (2007) applies the closed-form

solution derived by Henderson (2002) for the exponential option value and the investment

threshold, showing that market incompleteness results in earlier exercise and a lower real

option value. Henderson and Hobson (2002) employ a power utility function in the Merton

(1969) investment model, proposing an approximate closed-form optimal reservation value

for the option when the investment cost is small relative to initial wealth. They show that

the exponential and power utility option values behave very differently as a function of risk

aversion as it tends to zero, due to boundary constraints on the power utility value. Evans

et al. (2008) compare power and logarithmic utility values in a similar setting. Most of

these papers derive the optimal investment threshold and the indifference value for a finite-

horizon, continuous choice, deterministic-strike investment opportunity using a two-factor

GBM framework in which the value of the project to the investor is stochastic and possibly

1See Triantis and Hodder (1990), Capozza and Sick (1991), Trigeorgis (1993), Panayi and Trigeorgis (1998),
Benaroch and Kauffman (2000), Boer (2000), Yeo and Qiu (2002), Shackleton and Wojakowski (2007) and
many other. Some papers assume an infinite horizon – see Kogut (1991), Grenadier (1996), Smith and
McCardle (1998) and Patel et al. (2005) for a review. Other studies include a stochastic strike, including
McDonald and Siegel (1986), Quigg (1993) and Bowman and Moskowitz (2001).
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correlated with the price of a liquidly traded asset that may be used to hedge the investment

risk. Both price processes are discounted to present value terms, so that a univariate time 0

utility function may be applied to maximize the expected utility of the maturity pay-off. Our

work uses a similar discounted value process, but since we suppose from the outset that no

risks are hedgeable by traded securities we utilize only a one-factor framework.

Like us, Grasselli (2011) considers the case where none of the risks of the project are

hedgeable. Importantly, he proves that the time-flexibility of the opportunity to invest still

carries an option value for a risk-averse investor, so that the paradigm of real options can be

applied to value a private investment decision. Employing an exponential utility he proves

analytically that the real option value converges to zero as risk tolerance decreases. Our

numerical results demonstrate that this is also the case with other HARA utilities, where the

real option value erodes at a rate that depends on the cost of the investment relative to the

investor’s wealth.

Kasanen and Trigeorgis (1995) propose a “market integrated utility” to value real op-

tions that are available to public companies, under the rationale that undertaking the under-

lying asset would increase the market value of the company. They calibrate various HARA

utilities to market data and use this to value other, non-tradable assets of the company. By

contrast, we employ an individual utility for a private company with purely subjective views

on the evolution of the underlying asset price.

Some early work on real-option problems employed a decision-tree approach, but used a

constant, risk-adjusted discount rate in place of a utility.2 This led Copeland et al. (1990) to

dismiss the decision-tree approach as being less accurate than option pricing methods, thus

directing the main-stream of real options research towards risk-neutral American-type option

valuation. Nevertheless, Trigeorgis (1996), Smit (1996), Brandão and Dyer (2005), Brandão

et al. (2005, 2008) and Smith (2005) have all used a decision-tree approach, but these papers

rely on the assumption of market-priced risk and thereby adopt a RNV framework.3 The

Integrated Valuation Procedure (IVP) introduced by Smith and Nau (1995) and extended by

Smith and McCardle (1998) considers risk-averse decision makers endowed with a multivariate

utility function defined as a sum of time-homogenous exponential utility functions of future

cash flows, applying backward induction to derive the certain equivalent (CE) value of these

utilities. The IVP approach has much in common with our own, but is only valid for an

exponential utility and when cash flows at different times are independent, because only

2See Mason and Merton (1985), Trigeorgis and Mason (1987), Copeland et al. (1990) and Copeland and
Antikarov (2001).

3The real estate real options that have been considered in this literature include: the option to defer a land
development, e.g. Brandão and Dyer (2005) and Brandão et al. (2005), the option to divest, e.g. Brandão
et al. (2008) and Smith (2005), and the option to abandon, e.g. Smit (1996).
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exponential utilities have the unique property that their CE is additive over independent

random variables. Also, although economic analysis is commonly based on inter-temporal

consumption, it is standard in finance to base the utility of decisions on final wealth, with

future values discounted to present value terms. This discounting is an important step in

our framework because it greatly simplifies the decision analysis and allows the backward

induction step to be defined on the expected utility relative to any univariate utility function,

rather than on CE values based on an additively separable multivariate utility, as in the IVP.

Additionally, since the resolution of our decision problem is numerical and not analytical, we

have the freedom to employ any type of utility function we choose.

3 The Model

The mathematical framework may be summarized as follows: we assume investment risks

are un-hedgeable, so the market for the underlying asset is incomplete; its forward market

price has a measure that is subjective to the decision maker, with the risk-neutral measure

being a special case; investment costs may be predetermined or, if stochastic, will be perfectly

correlated with the market price; decision opportunities are discrete and are modeled using

a binomial price tree with decision nodes placed at every k steps; the decision horizon T

is finite; and the consequence of the decision is valued at some finite investment horizon,

T ′ > T . The decision maker holds subjective views not only about the evolution of the

market price for 0 ≤ t ≤ T ′ but also about the stream of cash flows (if any) that would

be realised if he enters the investment. In most applications cash flows would reflect the

individual management style of the decision maker, e.g. aggressive, expansive, recessive etc.

Additionally, the decision maker is characterised by his initial wealth, w0 which represents

the current net worth of all his assets, and a HARA utility function U(w) which reflects his

risk tolerance λ and how this changes with wealth.

3.1 Market Prices and Cash Flows

All future market prices and cash flows are expressed in time 0 terms by discounting at the

decision-maker’s borrowing rate r.4 Thus the investor borrows funds at rate r to buy the

property, rather than financing the cost from his initial wealth, which we suppose is not

4This rate depends on the business risk of the project as perceived by the financer, not as perceived by the
decision maker. It may also depend on the decision-maker’s credit rating but this assumption is not common
in the real options literature. The borrowing rate may be regarded as a cost of capital but it should not be
risk-adjusted because we shall model the investor’s utility values of the outcomes explicitly.

Copyright c© 2012 Alexander and Chen 6



ICMA Centre Discussion Papers in Finance DP2012-04

available for property investment.5 We suppose that r is a constant, risk-free rate.

First we assume the market price of the underlying asset follows a GBM, so that the

discounted forward market price pt evolves over time according to the process:

dpt
pt

= (μ− r)dt+ σdWt, for 0 < t ≤ T ′, (1)

where μ and σ are the decision-maker’s subjective drift and volatility associated with pt and

Wt is a Wiener process. Then pt has a lognormal distribution, pt ∼ log N ((μ− r) t, σ2t).

It is convenient to use a binomial tree discretisation of (1) in which the price can move

up or down by factors u and d, so that pt+1 = ptu with probability π and otherwise pt+1 = ptd.

No less than eleven different binomial parameterisations for GBM are reviewed by Chance

(2008). Smith (2005), Brandão and Dyer (2005), Brandão et al. (2005, 2008), Smit and

Ankum (1993) and others employ the ‘CRR’ parameterization of Cox et al. (1979). However,

the Jarrow and Rudd (1982) parameterisation, which is commonly used by option traders, is

more stable for low levels of volatility and when there are only a few steps in the tree. Thus

we set

m =
[
μ− r − 0.5σ2

]
Δt, u = em+σ

√
Δt, d = em−σ

√
Δt and π = 0.5. (2)

For the applications to real estate real options we also consider a modification of (1)

that represents a regime-dependent process, which trends upward with a low volatility for

a sustained period and downward with a high volatility for another sustained period, thus

replicating booms and busts in the market price of property. Thus we set:

dpt
pt

=

⎧⎨
⎩

(μ1 − r)dt+ σ1dWt, for 0 < t ≤ T1,

(μ2 − r)dt+ σ2dWt, for T1 < t ≤ T ′.
(3)

An alternative modification of GBM arises when the decision maker believes the market

price of property will mean-revert over a relatively short time horizon, rather than following

upward/downward trends. To replicate this type of property price scenario we utilize a simple

mechanism whereby the expected return would decrease following a price increase but increase

following a price fall, as in the Ornstein-Uhlenbeck process:

d ln pt = −κ ln

(
pt
p̄

)
dt+ σdWt (4)

5To avoid additional complexity we do not consider that investments could be financed from wealth, even
though this would be rational if wealth is liquid and r is greater than the return on wealth, r̃.
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where κ denotes the rate of mean reversion to a long-term price level p̄. Following Nelson

and Ramaswamy (1990) (NR) we employ the following binomial tree parameterisation for the

discretised Ornstein-Uhlenbeck process:

u = eσ
√
Δt, d = u−1 (5a)

πs(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 0.5 + νs(t)
√
Δt/2σ > 1

0.5 + νs(t)
√
Δt/2σ, 0 ≤ 0.5 + νs(t)

√
Δt/2σ ≤ 1

0, 0.5 + νs(t)
√
Δt/2σ < 0

(5b)

where

νs(t) = −κ ln

(
ps(t)u
p̄

)
(5c)

is the local drift of the log price process, which decreases as κ increases. The corresponding

price process thus has local drift:

μs(t) = −κ ln

(
ps(t)u
p̄

)
+ 0.5σ2 + r (5d)

Note that when κ = 0 there is a constant transition probability of 0.5 and the NR parame-

terisation is equivalent to the parameterisation (2) with m = 0.

The cash flows, if any, may depend on the market price of the asset as, for instance, in

rents from a property. We suppose that he receives the cash flow if he divests in the project

at time t but does not receive it if he invests in the project at time t. To define the cash flows

let s(t) denote the state of the market price at time t, i.e. a path of the market price from

time 0 to time t. In the binomial tree framework s(t) may be written as a string of u’s and

d’s with t elements, e.g. uud for t = 3. Now CFs(t) denotes the cash flow when the market

price is in state s(t) at time t. Regarding cash flows as dividends we call the price excluding

all cash flows before and at time t the ‘ex-dividend’ price, denoted p−s(t). At the time of a cash

flow CFs(t) the market price follows a path which jumps from p+s(t) = p−s(t) + CFs(t) to p−s(t).
6

The dividend yield, also called dividend pay-out ratio, is defined as

δs(t) =
p+s(t) − p−s(t)

p+s(t)
. (6)

6The subscript s(t) denotes a particular realisation of the random variable that carries the subscript t, e.g.
p+uud and p−uud are the left and right limits of a realisation of pt when t = 3. From henceforth we use either
the subscript s(t) or the subscript t, whichever is appropriate in the context of the price or cash flow. Also,
to be clear, p−t is a limit of pt from the right, not a limit from the left as is the usual notation in the literature
for jump processes.
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Clearly, if the cash flow is not state dependent, then the dividend yield must be state depen-

dent; if the dividend yield is not state dependent, then the cash flow must be state dependent;

in the general case both will be state dependent. The most basic model assumes that dividend

yields are deterministic and time but not state dependent, in which case we use the simpler

notation δt; in this case note that the cash flows will be both time and state dependent.7

3.2 Costs and Benefits of Investment and Divestment

The investment cost at time t, in time 0 terms, is given by:

Ks(t) = αK + (1− α)p−s(t), 0 ≤ α ≤ 1, (7)

where K is a constant in time 0 terms. When α = 1 we have a standard real option with

a predetermined strike K, such as might be employed for oil exploration decisions. When

α = 0 we have a variable cost at the market price p−s(t), such as might be employed for real

estate or merger and acquisition options. The intermediate case, with 0 < α < 1 has an

investment cost with both fixed and variable components, as may be the case with research

and development decisions.

We suppose that initial wealth w0 earns a constant, risk-free lending rate r̃, as do any

cash flows paid out that are not re-invested in the property (or similar investment). Any

cash paid into the property (e.g. a land development cost) is financed at the borrowing rate

r. The financial benefit to the decision-maker on investing at time t is the sum of any cash

flows paid out and not re-invested plus the terminal market price of the project. The cost of

entering the project at time t, in time 0 terms, is Kt, given by (7). Thus the wealth of the

investor at time T ′, in time 0 terms, following investment at time t is

wI
t,T ′ = e(r̃−r)T ′

w0 +
T ′∑

s=t+1

e(r̃−r)(T ′−s)CFs + p−T ′ −Kt. (8)

Some investments pay no cash flows, or any cash flows paid out are re-invested in the

project. Then the financial benefit of investing at time t, in time 0 terms, is simply the

cum-dividend price p̃t,T ′ of the project accruing from time t. If a decision to invest is made

at time t, with 0 ≤ t ≤ T , then p̃t,t = pt but the evolution of p̃t,s for t < s ≤ T ′ differs to

that of ps because p̃t,s will gradually accumulate all future cash flows from time t onwards. In

this case, when the decision maker chooses to invest at time t his wealth at time T ′ in time

7The state dependence of cash flows induces an autocorrelation in them because the market price is
autocorrelated. For this reason, defining an additively separable multivariate utility over future cash flows as
in Smith and Nau (1995) and Smith and McCardle (1998) is problematic.
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0 terms is

w̃I
t,T ′ = e(r̃−r)T ′

w0 + p̃t,T ′ −Kt. (9)

Note that if r̃ = r then also
∑T ′

s=t+1 e
(r̃−r)(T ′−s)CFs + p−T ′ = p̃t,T ′ in (8).

Similarly, if the decision maker already owns the investment at time 0 and chooses to

sell it at time t, the time 0 value of his wealth at time T ′ is

wS
t,T ′ = e(r̃−r)T ′

w0 +
t−1∑
s=1

e(r̃−r)(T ′−s)CFs + p+t − p0. (10)

Note that p0 is subtracted here because we assume the investor has borrowed funds to invest

in the property. Alternatively, if there are no cash flows, or they are re-invested,

w̃S
t,T ′ = e(r̃−r)T ′

w0 + p̃0,t − p0. (11)

The wealth wD
t,T ′ resulting from a defer decision at time t depends on whether he invests

later on. This must therefore be computed using backward induction as described in the next

sub-section.

3.3 Optimal Decisions and Real Option Value

As in any decision problem, we shall compare the expected utility of the outcomes resulting

from investment with the utility of a base-case alternative, which in this case is to do nothing.8

For brevity, we describe the backward induction step only for the decision to invest – it is

similar for the decision to divest, but replace I with S (for an existing investor that sells the

property) and D with R (for an existing investor that remains invested).

The option to invest at time t has time 0 utility value U I
t,T ′ = U

(
wI

t,T ′
)
, but since wI

t,T ′

is random so is U I
t,T ′ , and we use the expected utility

E
[
U I
s(t),T ′

]
= E

[
U
(
wI

t,T ′
)]

,

as a point estimate. Then, given a specific decision node at time t, say when the market is in

state s(t), the potential investor chooses to invest if and only if

E
[
U I
s(t),T ′

]
> E

[
UD
s(t),T ′

]
,

8So, for the divestment decision we compare the expected utility of the outcomes resulting from remaining
invested with the utility of the alternative, to divest.
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and we set

E
[
Us(t),T ′

]
= max

{
E
[
U I
s(t),T ′

]
,E

[
UD
s(t),T ′

]}
. (12)

Since there are no further decisions following a decision to invest, E
[
U I
s(t),T ′

]
can be evaluated

directly, using the utility of the terminal wealth values obtainable from state s(t) and their

associated probabilities. However, E
[
UD
s(t),T ′

]
depends on whether it is optimal to invest or

defer at the decision nodes at time t + 1. Thus, the expected utilities at each decision node

must be computed via backward induction.

First we evaluate (12) at the last decision nodes in the tree, which are at the time

T that option expires. These nodes are available only if the investor has deferred at every

node up to this point. We associate each ultimate decision node with the maximum value

(12) and select the corresponding optimal action, I or D. Now select a penultimate decision

node; say it is at time T − kΔt. If we use a recombining binomial tree to model the market

price evolution, it has 2k successor decision nodes at time T .9 Each market state s(T − kΔt)

has an associated decision node. Each one of its successor nodes is at a market state s∗(T )

that is attainable from state s(T − kΔt), and has an associated probability πs∗(T ) determined

by the state transition probability of 0.5, given that we employ the parameterisation (2).10

Using the expected utility associated with each attainable successor node, and their associated

probabilities, we compute the expected utility of the decision to defer at time T − kΔt. More

generally, assuming decision nodes occur at regular time intervals, the backward induction

step is:

E
[
UD
s(t−kΔt),T ′

]
=

∑
s∗(t)

πs∗(t)E
[
Us∗(t),T ′

]
, t = kΔt, 2kΔt, . . . , T − kΔt, T. (13)

At each decision node we compute (13) and associate the node with the optimal action and its

corresponding maximum expected utility. We repeat the backward induction until we arrive

at a single expected utility value associated with the node at time 0. Finally, the option value

is the certain equivalent (CE) of this expected utility, less the initial wealth w0. By definition,

CE(w) = U−1 (E[U(w)]) for any monotonic increasing utility U .

9The recombining assumption simplifies the computation of expected utilities at the backward induction
step. However, we do not require that the binomial tree is recombining so the number of decision nodes could
proliferate as we advance through the tree. Note that the state price tree will recombine if cash flows are
determined by a time-varying but not state-varying dividend yield.

10So if the tree recombines these probabilities are 0.5k, k0.5k, k!/(2!(k − 2)!)0.5k, ...., k0.5k, 0.5k under the
JR parameterization (2). If the CRR parameterisation is employed instead the transition probabilities for a
recombining tree would be more general binomial probabilities.
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3.4 Risk Preferences

Denote by U : R → R the decision-maker’s utility function. Previous research on decision

analysis of real options, reviewed in Section 2, employs either risk-neutrality or an exponential

utility function, which may be written in the form

U(w) = −λ exp
(
−w

λ

)
, (14)

where w denotes the terminal (time T ′) wealth of the decision maker, expressed in time 0

terms and λ > 0 denotes his risk tolerance and γ = λ−1 is his risk aversion. Note that w is a

random variable taking values determined by the decision-maker’s (subjective) views on the

evolution of the market price and the decisions he takes before time T ′. Under (14) we have

CE(w) = −λ log

(
−E[U(w)]

λ

)
. (15)

The exponential utility function has very special properties that make it particularly

tractable (see Davis et al., 2006, Chapter 6). In fact, all the properties listed below are unique

to exponential utilities except the last, which is shared by other utility functions in the HARA

class.

1. The exponential function (14) is the only utility with a CE that is independent of the

decision-maker’s initial wealth, w0. In other words, adding a constant to w results in

only in an affine transformation which does not change the form of the utility. This is

also known as the ‘delta’ property. It implies that we obtain the same option value, and

the same optimal decisions, whether w denotes the P&L or net wealth;

2. The Arrow-Pratt coefficient of risk aversion −U ′′(w)/U ′(w) = γ. Thus, the exponential

utility (14) represents decision makers with constant absolute risk aversion (CARA) and

λ in (14) has the approximate interpretation of being the maximum dollar amount X

that one would be willing accept in a 50:50 gamble of winning X and losing X/2;

3. The exponential is the only utility function with an additive CE over independent risks.

When xt ∼NID(μ, σ2) and wT = x1 + . . .+ xT then CE(wT ) = μT − (2λ)−1σ2T.

4. Exponential utilities have the following time-homogeneity property. Suppose Ut : R →
R on t = 0, 1, ...., T ′, is defined as

Ut(wt) = −λt exp

(
−wt

λt

)
, (16)
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with risk tolerance λt = ertλ. Set w0
t = e−rtwt. Then:

Ut(wt) = −λt exp

(
−wt

λt

)
= −ertλ exp

(
−w0

t

λ

)
= ertU(w0

t ),

where U : R → R is a time-invariant exponential utility function as in (14) defined on

any future value of wealth discounted to time 0.

Properties 1 and 2 are very restricting. CARA implies that decision makers leave unchanged

the dollar amount allocated to a risky investment when their initial wealth changes. The

delta property means that the initial wealth of the decision maker, and therefore also its size

relative to the price of the asset, has no influence on the exponential utility option value.

Property 3 implies that when cash flows are normally and independently distributed (NID)

the decision-maker’s risk premium for the sum of cash flows at time t is (2λ)−1σ2T . The

risk premium scales with time at rate (2λ)−1σ2, which is the risk-adjustment term that is

commonly applied to discounted cash flow models and was also applied in the influential

paper by Copeland et al. (1990). Thus, risk-adjusted discount rates implicitly assume an

exponential utility over NID uncertainties and when the decision-maker’s utility is explicitly

modelled there is no need to additionally risk-adjust discount rates.

The last property makes an exponential utility (and indeed any HARA utility) particu-

larly easy to employ in decision-tree analysis. In particular, on assuming the risk tolerance is

time-varying and grows exponentially at the same rate as the discount rate, we can compute

utilities (and their expectations and certain equivalents) to value any future uncertainty by

using the constant utility function (14) applied to present values. This is much easier than

discounting the expected values of time-varying utility functions applied to time t values at

every step in the backward induction. However, our framework is not constrained to expo-

nential preferences over NID uncertainties. In fact, such a case would lead to a solution where

the same decision (to invest, or to defer) would be reached at every decision node in the tree,

because the uncertainties faced at any node are just a scaled version of the uncertainties at

any other node.

However, the CARA property of the exponential utility is often criticised because it

would not apply to investors that would change the dollar amount allocated to risky invest-

ments when their wealth changes. For this reason we now consider a selection of other utility

functions from the HARA class for which both absolute and relative risk aversion can increase

with wealth.
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The displaced logarithmic utility may be written

U(w) = λw0 log

(
1 +

w − w0

λw0

)
, for w > (1− λ)w0, (17)

where w includes initial wealth w0, so w − w0 is the P&L from the investment. Note that

(17) is a standardized from of logarithmic utility for which U(w0) = 0, U ′(w0) = 1 and the

asymptote to −∞ is at (1 − λ)w0. Also, −U ′(w)/U ′′(w) = λw0 + w − w0, so at w = w0 the

local coefficient of absolute risk tolerance is λw0 and λ is the local coefficient of relative risk

tolerance.11 When λ = 1, local relative risk aversion is 1, independent of wealth, so in this

case the utility (17) is said to have the constant relative risk aversion (CRRA) property.

The power utility is best written in terms of risk aversion γ = λ−1, as

U(w) = −γ|1− γ|−1

(
w

w0

)1−γ

, for w/w0 > 0 if γ > 1. (18)

Since −U ′(w)/U ′′(w) = λw, λ is the local coefficient of relative risk tolerance. It is a constant,

so the power utility has the CRRA property. Absolute risk tolerance increases linearly w, but

for (18) the sensitivity of local risk tolerance to changes in w is λ, whereas it is 1 for (17).

Thus, when λ < 1, local risk tolerance for (17) is greater than (less than) it is for (18) when

w > w0 (w < w0). The opposite is the case when λ > 1.

Exponential, logarithmic and power utilities are all special cases of the general HARA

utility, which has two parameters determining the local coefficient of absolute risk tolerance

and its sensitivity to wealth. That is, HARA utility functions have a risk tolerance λ that

increases linearly with wealth at the rate η, and are defined as:

U(w) = −[1 +
η

λw0
(w − w0)]

1−η−1

(1− η)−1, for w > (1− η−1λ)w0. (19)

When η = 0 we have the exponential utility, η = 1 corresponds to the displaced logarithmic

utility, η = 0.5 gives the hyperbolic utility and η = λ gives the power utility.

4 Numerical Results

Recall that RNV principal yields a unique price for an option, and this reference price implies

that the option could be tradable on a secondary market. By contrast, the option value for a

11Relative risk tolerance is expressed as a percentage of wealth, not in dollar terms. So if, say, λ = 0.4 the
decision maker is willing to take a gamble with approximately equal probability of winning 40% or losing 20%
of his wealth, but he would not bet on a 50:50 chance (approximately) of winning x% or losing x%/2 for any
x > 0.4.
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risk-averse investor in an incomplete market is purely subjective. It represents the net present

value that, if received with certainty, would give him the same utility value as the expected

utility of the uncertain investment.12 Such values merely enable the investor to rank alterative

investment opportunities.

With the aim of addressing some of the questions raised in the introduction, the results

in this section compute the values of several real options under different assumptions for

the investor’s utility but always assuming his views correspond to the GBM price process

assumption (1). We analyse the relationship between the RNV option price and the more

general, subjective option values that apply under the incomplete market assumption. We

illustrate how the subjective value changes with the scheduling of decision opportunities,

and with the cost of the investment relative to the companies’ net asset value (or initial

wealth). We explain how the decision maker’s risk preferences influence his valuation, and

especially how the sensitivity of his risk tolerance to wealth can alter his ranking of different

opportunities. And we show how crucial the assumption about predetermined or stochastic

investment costs really is, and how it influences the sensitivity of real option values to the

investor’s views about expected return and risk.

First we present a simple example to help fix ideas, where the decision maker has an ex-

ponential utility and the transacted price is the market price of the asset, not a predetermined

strike. The investment decision thus provides a concrete example of the zero correlation case

considered by Grasselli (2011), where the opportunity to invest still carries a positive value.

Indeed, the equivalent divest decision also has a positive value. From henceforth, unless

otherwise stated, we set r̃ = r; no additional insights to the questions that we pose can be

provided by using differential lending and borrowing rates. Also, we set the current price of

the asset to be p0 = $1m, without loss of generality.

4.1 Real Options at Market Price: Incomplete Market, Exponential Utility

Consider example of an option to purchase an asset that has no associated cash flows where

decisions can be taken now, next year and the year after and the investment horizon is

T ′ = 3 years. The current price of the asset is one million dollars and the decision maker

believes this will evolve according to (1) with μ = 10% and σ = 20% per annum. He has

an exponential utility with risk tolerance 0.4, and the risk-free lending and borrowing rates

are both 5%.13 The decision tree is depicted in Figure 1. We set Δt = k = 1, r = 5%,

12Just like financial option prices, the minimum subjective value for a real option is zero, representing that
the investment would never be attractive whatever happens to its market price in future.

13To facilitate our later comparison between exponential and other types of utility values for real options,
we represent λ as a proportion of initial wealth. Since the exponential utility is independent of initial wealth
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μ = 10%, σ = 20%, so using (2) we have m = 0.03, u = 1.259, d = 0.844 and π = 0.5.

Decision nodes are marked by shaded blue boxes, with the alternatives I and D denoting

invest and defer. Black numbers are discounted market prices, starting with p0 = 1. Red

numbers at terminal nodes are the purchase cost and, after the ‘=’ sign, the P&L from

investment in time 0 terms.14 For instance, if the decision is to invest at t = 2 and the market

price moves up every year, the present value of the profit equals the difference between 1.99

(the market price in year 3) and 1.58 (the cost after two up moves) i.e. 0.41. Numbers in

blue at the terminal nodes are utility values, using (14). For instance, at the lowest nodes

−0.4 = U(0),−0.528 = U(−0.11) and −0.252 = U(0.18). Framed blue numbers are expected

utilities, e.g. −0.390 = 0.5×−0.252 + 0.5×−0.528.

Consider the application of (12), first at the t = 2 decision nodes that follow a decision

to defer at t = 1. The lowest of these four nodes takes the utility value max{−0.390,−0.4} =

−0.390 so the optimal decision is to invest, which is marked in bold. A similar argument

applied to the three other decision nodes at t = 2 gives an optimal decision to defer in each

case. Next consider the two decision nodes at t = 1 and again compare the expected utility

from investment to that of deferring. Investment at t = 1 leads directly to three possible

terminal values for P&L. For instance, following an up move at time 0 we reach the upper

of the two decision nodes. The attainable terminal market prices are 1.99, 1.34 and 0.9 with

associated probabilities 0.25, 0.5 and 0.25 respectively, so the expected utility is −0.428.

But in this case the expected utility from deferring is −0.4, which is greater, so the optimal

decision is to defer and the node takes the utility value −0.4. A similar argument for the

lower node yields the optimal decision to invest, with an expected utility of −0.388. Thus,

applying (13), the expected utility from deferring at time 0 is −0.394. This is compared

with the expected utility of −0.399 from investing at time 0, which can be calculated directly

using the four possible values for terminal wealth at the top of the tree, having associated

probabilities 0.125, 0.375, 0.375 and 0.125 respectively. Since −0.394 > −0.399, the optimal

decision at time 0 is to defer, and the expected utility value at time 0 is −0.394. The certain

equivalent of this is −0.4 log(0.394/0.4) = 5, 853 × 10−6, which is the net value of the real

option to this decision maker, measured in the same units as the market price. Hence, the

optimal decision is to defer the investment now and invest in the future only if the market

an alternative interpretation is that the decision maker has an initial wealth of $1m.
14Although this is not the case in general, with an exponential utility one can leave the initial wealth out

of the entire analysis. So in Figure 1 and 2 the terminal price nodes show only the increment in wealth, i.e.
profit and loss, P&L. Exactly the same option value would obtain on adding w0 to all terminal price nodes
and subtracting w0 from the final CE at t = 0. Then the expected utility values in the tree would change,
but the same decisions would be optimal at every node and we would arrive at the same real option value.
Indeed, with an exponential utility we can add any constant we like to all terminal nodes in the tree, provided
we subtract this constant from the final CE at time 0.
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Figure 1: Illustration of the backward induction for the invest option, including the optimal decision
at each node with I = ‘invest’ and D = ‘defer’, discounted market prices in black, expected utilities
for backward induction in blue, costs and P&L in red. Decision opportunities every year for three
years. p0 = 1, r = 5%, μ = 10%, σ = 20%. Exponential utility with λ = 0.4.
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price falls next year, and since the asset is currently valued at $1m, the value of this decision

opportunity is 5, 853 after accounting for the cost of capital to purchase the property.

Now consider the equivalent problem from the perspective of the current owner of the

asset.15 We suppose this potential seller has the same views on market prices as the potential

investor, and the same utility and borrowing/lending costs. Figure 2 depicts the decision

tree for the divest option. The action S denotes ‘sell the property’ and the action R denotes

‘remain invested’. To obtain the present value of the P&L arising from selling the asset at

any time in future, we subtract its current value p0 from the forward market price, assuming

the asset is currently financed by borrowing funds.

Figure 2: Illustration of the divest real option, including optimal decision at each node with S
= ‘sell’ and R = ‘remain’, discounted market prices in black and expected utilities for backward
induction in blue. Decision opportunities every year for three years. r = 5%, μ = 10%, σ = 20%.
Exponential utility with λ = 0.4.

If the owner sells the property the market price at that time is realised and there is no

future uncertainty. But if he remains the owner of the property, further decision nodes occur

15We use the term ‘equivalent’ to refer to the invest and divest options that are based on the same price
and decision processes, for decision makers with identical utilities. Note that if it is optimal for the investor
to exercise his option at t = 0 and for the divestor of the equivalent option never to exercise, their pay-off
distributions become identical and hence the two options have the same value – see XXX for an example.
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at future times when the market price is uncertain. If he does not sell the property at or

before t = 2, the terminal market prices can take one of two values, given the price at the

penultimate node. For instance, if the market price moves up at t = 1 and at t = 2, then at

t = 3 it could be either 1.99 or 1.34, with equal probability. Now the computation of expected

utilities and application of (12) and (13) proceed exactly as before. The expected utility at

time 0 is −0.0321 and its CE is −0.4 log(0.0321/0.4) = 9, 030× 10−6. We conclude that this

real option to divest has value $9,030 to this particular owner, whose optimal decision is to

keep the asset now but sell it if the price goes up next year.

The current price p0 plays the role of a fixed cost to the divestor. This contrasts with

the investment option, where the investor pays the market price of the asset at the time he

chooses to invest, so his cost is not constant. As a result, when the parameters that determine

the market price are changed the pay-off distribution of the divest option fluctuates at least

as much, and often more than that of the equivalent invest option. Thus the divest option

value is at least as sensitive as the equivalent invest option to changes in the parameters of the

price process. We shall explore the sensitivity of real option values to changes in the decision

maker’s subjective views about expected return and risk in Section 4.6.

4.2 Investment Costs and the Risk-Neutral Valuation Approach

Again consider the example of Figure 1, but now allow the investment cost to take the general

form (7) with K = $1m. We compare the case α = 0 considered above with the fixed-strike

option where α = 1, and with the case α = 0.5. The investment threshold depends crucially

on α: when α = 0 (invest at market price) it may become optimal to invest but only if the

price falls, as shown above. However, when α = 1 so we have a fixed strike, at-the-money

(ATM) option, it may become optimal to invest but only if the price rises because in this case

the option value depends on the expected utility of an ATM call option pay-off.

Table 1 shows how the option value increases with both α and the investor’s risk tol-

erance. The value of $5,853 that was derived using Figure 1 is shown in bold. The real

option values increases with both α and λ. As λ → ∞ the option value converges to the

risk-neutral (linear utility) value, and for the fixed-cost case α = 1 we obtain the maximum

value of $224,333. This value is still contingent on the investor’s personal views about market

prices. In the case that the investment risks are perfectly hedgeable, as under the standard

RNV assumptions, the option price is $108,285. The RNV price is the same for all investors

(independent of λ) and it can be derived in our framework using a linear utility and setting

μ = r (in this case 5%).

Great care should be taken when making assumptions about investment costs. In some
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������α
λ

0.2 0.4 0.6 0.8 1 ∞

0 0 5,853 45,305 70,656 86,976 161,374
0.5 31,597 64,814 84,749 96,762 106,544 161,374
1 59,825 116,939 145,009 161,573 172,462 224,333

Table 1: Exponential utility with parameters T ′ = 3 years, Δt = k = 1, K = p0 = $1m,
r = r̃ = 5%, μ = 10%, σ = 20%.

applications – for instance, when a licence to drill for oil has been purchased and the decision

concerns whether the market price of oil is sufficient to warrant exploration – the fixed-strike

assumption would be applicable. However, in many applications the investment cost is at the

market price prevailing at the time that the investment is made. The assumption about the

investment cost – whether it is fixed (in time 0 terms) or stochastic (and perfectly correlated

with the market price) – has a significant influence on the real option value. A fixed cost

(α = 1) may be regarded as the strike of an American call option, and the real option value

is derived from the expected utility of a call option pay-off for which the upper part of the

terminal wealth distribution above the strike matters. In contrast, the opposite extreme

(α = 0) focuses on the lower part of the terminal wealth distribution below the current price

p0. Although log returns are similar across the whole spectrum under the GBM assumption

(1), P&L is in absolute terms and it is greater in the upper part of the distribution than in

the lower part. For this reason the at-the-money (K = $1m) fixed-strike assumption always

yields a greater real option value than the invest-at-market-price assumption. However, this

observation only holds under GBM views for market prices, see Section 5.1 for further details.

Our second conclusion is that the standard, RNV approach can produce very unreliable

results when the assumption of a complete market and a fixed strike option are unwarranted.

The subjective price could be very much less than the RNV price (especially when risk toler-

ance is low and the investment cost is at market price) or very much greater than the RNV

price (especially when risk tolerance is high and the investment cost is fixed). Note that the

RNV price is always zero when the opportunity to invest is at market price. This is because

the linear utility function yields a CE equal to the expected value of terminal wealth, and

this is w0 since the discounted price is always a martingale under the risk-neutral measure. In

such a case the value of an investment opportunity is always zero.16 The relationship between

the RNV option price and a real option’s more general utility valuation is further explored in

Section 4.5.

16The RNV price is based on a hedging argument that also requires no frictions, i.e. a perfect market, so
that lending and borrowing costs are the same, i.e. r = r̃ as we have assumed.
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4.3 Effect of Decision Frequency on Real Option Value

A real option value should not decrease when there is more flexibility to make decisions over

the horizon of the option. If the decision never changes as a result of including more or

less decision nodes, the option value will remain unchanged. Otherwise, the option value

should increase as more decisions are allowed, since having fewer decisions places additional

constraints on the opportunities available to the decision maker. Here we quantify the effect

on the option value of increasing the number of decision opportunities. It is important that

the trees are nested, i.e. no new decision nodes are inserted as their number decreases, because

only in this way does reducing the number of nodes capture the effect of placing additional

constraints on decision opportunities.

α = 0: invest at market price

������k
λ

0.2 0.4 0.6 0.8 1 ∞

12 109.5 1,132 3,712 8,197 14,480 645,167
6 142.2 1,344 4,309 9,212 16,089 645,167
3 163.9 1,471 4,618 9,803 17,022 645,167
1 176.9 1,553 4,828 10,185 17,624 645,167

α = 1: fixed strike with present value $1m

������k
λ

0.2 0.4 0.6 0.8 1 ∞

12 49,385 115,086 174,731 223,201 263,614 881,419
6 71,365 144,638 204,078 252,243 292,632 908,333
3 86,062 157,289 214,375 263,019 303,834 919,322
1 93,115 166,450 225,568 273,619 313,888 926,058

Table 2: Effect of number of decisions on real option value. Exponential utility, for different λ and
k. p0 = $1m,T ′ = 5,Δt = 1/12, T = T ′ − kΔt, r = r̃ = 5%, μ = 15%, σ = 50%.

The results shown in Table 2 are based on an opportunity to invest in an asset that has

no associated cash flows and has current market price $1m. The investor has an exponential

utility and the decision tree (not shown) is characterised by the parameter values: T ′ =

5,Δt = 1/12, r = 5%, μ = 15%, σ = 50%. Thus, there are 60 monthly steps in the binomial

tree for the market price.

Now suppose that decision nodes occur every k steps, as in the backward induction

algorithm (13), and that T = T ′ − kΔt. For instance, if k = 12 the decision nodes occur only
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once per year and the last decision is taken at the fourth year. So that the four decision trees

are nested the values considered for k are 12, 6, 3 and 1 representing decision opportunities

once per year and once every 6 months, 3 months and 1 month.

The upper part of Table 2 reports the value of the option to invest at market price and

the lower part reports the value of the option to invest at a fixed cost K = $1m, for investors

with different levels of risk tolerance λ. Again the option value increases very rapidly with λ.

As expected, it also increases when more decision nodes occur in the tree, i.e. as k decreases,

and the percentage increase in option value is greatest for investors with low λ, whereas the

absolute increase in option value is greatest for high λ.

4.4 The HARA Utility Class

In all HARA utilities the local absolute risk tolerance coefficient is λw0, whereas it is just

λ for the exponential utility. Thus, HARA utility values with w0 = 1 are comparable with

exponential utility values, since the initial absolute risk tolerance is identical. Setting w0 = 1,

Figure 3 graphs the exponential, logarithmic, hyperbolic and power utility real option values

as a function of λ, with 0 < λ ≤ 1, for the options to invest at market price and at a fixed

strike equal to the current market price. The asset again has zero cash flows and the tree

is again based on the parameters (20). The exponential utility yields the lowest and the

logarithmic utility the highest option values.
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Figure 3: Comparison of invest option values under exponential, logarithmic, power and hyperbolic
utilities as a function of risk tolerance. Real option values on the vertical scale have been multiplied
by 1000 for clarity. Parameters are as in (20).

For extremely high risk tolerance, i.e. λ > 1, hyperbolic utility values still lie between the
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exponential and logarithmic values, but the power utility values exceed even the logarithmic

values, and as λ increases further the power values can become very large indeed, because the

risk tolerance increases too rapidly with wealth.

However, HARA utilities are not always well-behaved. For instance, when w < w0 the

logarithmic local coefficient of risk tolerance is relatively small, and if the distribution of w is

skewed to have mean below w0 the logarithmic real option value can even be smaller than the

exponential utility option value. Also, the logarithmic utility value becomes highly sensitive to

small changes in w as it decreases towards the asymptote at the boundary (1−λ)w0 because,

in the normal range of (0, 1) for λ, the logarithmic local risk tolerance is the most sensitive

to wealth (recall, η = 1). Even the hyperbolic utility, with η = 0.5, can yield unstable results

near the lower boundary. On the other hand, when λ > 1 the power utility (which has η = λ)

has a risk tolerance that is much too sensitive to changes in wealth.

Exponential utility values are very stable; indeed they can yield analytic solutions in

many cases. However, they have the CARA property which is widely regarded as being

unrealistic. Indeed, exponential utility values for real options are typically too low because

they ignore the possibility that the decision maker’s risk tolerance could increase with wealth.

If it does, the real option’s value will always be greater than it is for an investor with constant

(CARA) risk aversion.

We conclude that, of the four HARA utilities considered, power utilities produce the

most reliable real option values for most reasonable values of risk tolerance, i.e. for 0 ≤
λ ≤ 1, but for decision makers with very high risk tolerance logarithmic or hyperbolic utility

representations would be more appropriate, the former giving real option values that are

greater than the latter.

4.5 Relative Cost of the Asset

Here we examine how the current price of the asset affects terminal wealth if the asset is

purchased now or in the future. When the price of the asset is high relative to initial wealth

the terminal P&L becomes relatively more variable and this could increase or reduce the

option’s value, depending on the way that risk tolerance changes with wealth. The P&L

arising from a low-cost asset would hardly change over the investment horizon, but it could

change a lot for a high-cost asset with the same volatility. Thus, different optimal decisions

and option values may be obtained for assets with a current price that is low or high, relative

to initial wealth, even when the returns on the two assets have the same mean and variance.

We set the asset price at time 0 to be p0 = 0.1, 1 and 10 and assume the investor’s initial

wealth is w0 = 1 so that the investments have different sizes relative to the initial wealth of
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the investor. Suppose that the asset price trees have parameters:

T ′ = 5,Δt = 1/12, k = 3, r = 5%, μ = 15%, σ = 50%. (20)

Figure 4 displays results for an exponential and a logarithmic utility for different values of

the risk tolerance λ at the initial wealth of the investor. Both the option value and λ are

represented on a base 10 log scale. Figures 4a and 4b compare the option values for α = 0

(invest at market price) and α = 1 (fixed ATM strike at p0).
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Figure 4: Real option values under exponential and logarithmic utilities as a function of risk tol-
erance λ, T ′ = 5, Δt = 1/12, k = 3, r = r̃ = 5%, μ = 15%, σ = 50%, K = p0 = $0.1, $1, $10m,
w0 = 1m, 0.1 ≤ λ ≤ 100, CE in $m. Both axes are in log10 scale.

In each case option value converges to the value obtained for a risk-neutral investor

as λ → ∞, and for the fixed-strike ATM option this value increases with p0. The option

price under the standard assumption of a complete market is marked by the dotted lines in

Figure 5b (and recall that the RNV price is always zero in Figure 5a). This is less than the

risk-neutral subjective value because μ > r, but it would be greater than the risk-neutral

subjective value when μ < r. Also, the exponential option values (solid lines) are always

less than or equal to the values obtained under the logarithmic utility (dotted lines) with the

same initial risk tolerance, especially for the fixed-strike option and low values for λ. The

option values for the high-priced asset, represented by red lines, are most sensitive to λ and

the values for the low-priced asset, represented by black lines, are least sensitive to λ. These

results demonstrate that the smaller (greater) the risk tolerance of the investor, the higher

he ranks the option to invest in the relatively low-priced (high-priced) asset, given that the

asset-price dynamics follow the same GBM process.17

17For instance, an investor with initial wealth $1m, an exponential utility and a risk tolerance of 0.5 would
prefer the option to invest in the asset with current price $0.1m; but if his risk tolerance was 5 he would prefer
the option on the asset with current price $1m; and if his risk tolerance were 50 he would prefer the option
to invest in the asset with current price $10m.
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An alternative perspective is of several decision makers having different levels of initial

wealth w0 but the same relative risk tolerance at w0, all valuing the same investment oppor-

tunity under identical views for the asset price process. Here we set the asset price at time

0 to be p0 = 1 but the investment has different sizes relative to the different initial wealth

of the investors. For instance, for an investor with w0 = 100 the current asset price is only

1/100th of the investor’s initial wealth. There is one asset price tree, which we again suppose

has parameters (20) and now let the investors have w0 = 0.1, 1, 10, 100 or 1000. Figures 5a

and 5b compare the option values for α = 0 (invest at market price) and α = 1 (fixed strike

at $1m) based on a logarithmic utility (17). We again display the option value as a function

of the initial coefficient of relative risk tolerance λ taking values from 0.1 to 100 on a base 10

log scale. Note that an investor with w0 = 1000 has an option value that is almost a straight

line at the risk-neutral option value because his initial absolute risk tolerance λw0 is so high.
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Figure 5: Comparison of option values under logarithmic utilities as a function of risk tolerance,
T ′ = 5, Δt = 1/12, k = 3, K = p0 = $1m, r = r̃ = 5%, μ = 15%, σ = 50%,
w0 = $0.1, 1, 10, 100, 1000m, 0.1 ≤ λ ≤ 100, CE in $m. The λ axis is in log1 0 scale.

4.6 Sensitivity to μ and σ

While an investor’s risk tolerance and its sensitivity to wealth may be defined fairly accurately

using the techniques introduced by Keeney and Reiffa (1993), the values of μ and σ that

underpin the real option valuation may be highly uncertain. This depends on the confidence

that the decision maker has in his views about the price process: the more confident he is in

his price forecasts the more certain he will be about the real option value. In this section we

ask how sensitive real option values are to the subjective estimates for the drift and volatility

of the price process.

Figure 6 depicts the values of a real option to invest as a function of μ and σ, under

exponential and logarithmic utilities. Given our results in Section 4.4 these can be regarded
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as lower and upper bounds for the real option value. The other parameters are as stated in the

legend to the figure. When α = 0 the option value always decreases as uncertainty increases,
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Figure 6: Value of an investment option under exponential and logarithmic utilities as a function
of the investor’s subjective views on expected return μ and volatility σ, for λ = 0.2. CE value in $m
for p0 = $1m, w0 = $10m, r = 5%, T ′ = 5,Δt = 1/12, k = 3.

for any given expected return, due to the risk aversion of the decision maker. When there is

high uncertainty (σ greater than about 30%) the exponential utility values are zero, i.e. the

investment opportunity is valueless as the price would never fall far enough (in the decision

maker’s opinion) for investment to be profitable. By contrast, the logarithmic utility always

yields a positive value provided the expected return is greater than about 10%, but again

the risk-averse investor becomes more likely to defer investment as the volatility increases.

Indeed, the option values are monotonically decreasing with σ for every μ and monotonically

increasing with μ for every σ.

With low uncertainty and high expected return the two real options have similar values

– as can be seen from the points above (μ, σ) = (25%, 10%) in the two surfaces. However,

the fixed-strike option (α = 1) has quite different sensitivity to μ and σ. This is particularly

noticeable under the logarithmic utility, where the option values increase with volatility,

except when the expected return is far above the risk-free rate. Of course, when μ = r (=

5% in this example) the option values increase monotonically with volatility, just as standard

risk-neutral option prices do. Clearly then, the assumption about the investment costs affects

not only the point valuation of a real option, but also the sensitivity of this value to changes

in the investor’s views about forward market prices.
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The sensitivity of the option value to μ and σ also decreases as risk tolerance increases.

To illustrate this we give a simple numerical example, for the case α = 0 and an exponential

utility. Suppose μ = 20%. If λ = 0.2 the option value is $1, 148 when σ = 40% and $241, 868

(almost 211 times larger) when σ = 20%. When λ = 0.8 the option value is $167, 716 when

σ = 40%; but now when σ = 20% it only increases by a multiple of about 4, to $713, 812.

Similarly, fixing σ = 20% but now decreasing μ from 20% to 10% the value changes from

$241, 867 to $109 (2, 210 times smaller) for λ = 0.2, but from $713, 812 to $113, 959 (only

about 6 times smaller) when λ = 0.8. Hence, the option value’s sensitivities to μ and σ are

much greater for low levels of risk tolerance.

5 Applications to Real Estate

This section applies our framework to decision problems encountered by private real-estate

companies or housing trusts. The investor may be risk-neutral or risk-averse with a HARA

utility, and where appropriate we compare the values obtained under the invest-at-market-

price assumption with the values under a fixed-strike assumption (note that some authors, e.g.

Howell et al. (2001) employ a fixed-cost assumption for real estate decision problems). First

we examine the option values obtained when the decision maker’s views are captured by the

‘boom-bust’ price process (3) and compare these with the values obtained under GBM views.

Then show how the mean-rerting pruce assumption (4) may be employed in our framework,

and compare the ranking attributed by different investors to two properties, characterized

by different types of mean-reversion in their prices. After this we focus on the inclusion

of cash flows, considering both positive cash flows for modelling buy-to-let real options and

negative cash flows for modelling land development options, again showing how the ranking of

different opportunities depends crucially on the assumptions made about the decision-maker’s

risk tolerance and its sensitivity to wealth.

5.1 Property Price Recessions and Booms

Many property markets are subject to bubbles and crashes. For example, based on monthly

data on the Vanguard REIT exchanged traded fund (VQN), shown in Figure 5.1 the average

annualised return from January 2005 to December 2006 June 2011 was 21% with a volatility

of 15%. However, from January 2007 to December 2009 the property market crashed, with

an average annualised return of −13% with a volatility of 58%, and from January 2010 to

June 2011 the average annualised return was 22% with a volatility of 24%. Clearly, when

the investment horizon is several years a property investor may wish to take account of both
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booms and busts in his views about expected returns, and we now give a numerical example

of an investment option valuation under such scenarios.
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Figure 7: Monthly prices and returns on the Vanguard REIT exchanged traded fund, January 2005
to June 2011

Consider a simple boom-bust scenario over a 10 year horizon. The expected return

is negative, μ1 < 0 for the first n years and positive, μ2 > 0 for the remaining 10 − n

years. Following the above observations about VQN we set μ1 = −10%, σ1 = 50% and

μ2 = 10%, σ2 = 30%. We suppose decisions are taken every quarter with Δt = 0.25 and set

r = 5% in the price evolution tree.

The real option values are given in Table 3, for investors having exponential utility and

with varying levels of risk tolerance between 0.2 and 1. The property price recession lasts

n = 0, 2, 4, 6, 8 or 10 years.18 When n = 0 the investor expects the boom to last the entire

period, but since σ2 = 30% there is still uncertainty about the evolution of the market price,

and with μ2 = 10% the price might still fall. The case n = 10 corresponds to the view that

the market price to fall by μ1 = −10% each year for the entire 10 years, but with σ2 = 50%

this view is held with considerable uncertainty. At these two extremes, for any given λ the

invest-at-market-price option has a lower value than the fixed-strike option because we have

a standard GBM price process; this finding conforms with our earlier results. However, for

intermediate values of n the invest-at-market-price option often has a higher value than the

fixed-strike option. This ordering becomes more pronounced as n increases, because the

investment cost decreases in the α = 0 case and, provided that the price rises after the

property is purchased, the profits would be greater than they are under the fixed-cost option.

This type of analysis would apply when an investor is considering which one of several

properties to purchase, and the properties are in locations that have different market price

characteristics. For instance, he may believe that there will be a few years of recession in the

18Results for the divest option, or for the invest option under different utilities are not presented, for brevity,
but are available on request. The qualitative conclusions are similar.
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α = 0

������λ
n

0 2 4 6 8 10

0.2 866 382,918 727,922 438,482 174,637 0
0.8 211,457 1,230,035 2,297,909 1,148,695 370,354 0
1.0 266,752 1,349,295 2,552,434 1,300,724 406,567 0
∞ 648,173 2,234,361 4,777,950 5,308,672 1,045,800 0

α = 1

������λ
n

0 2 4 6 8 10

0.2 164,721 391,060 552,578 194,371 51,040 5,022
0.8 392,866 961,279 1,704,007 692,529 159,663 14,943
1.0 432,280 1,064,416 1,938,157 821,733 186,257 17,191
∞ 740,493 1,989,551 4,339,659 4,860,376 841,706 50,787

Table 3: Effect of a time-varying drift for the market price, with downward trending price for
first n years followed by upward trending price for remaining 10−n years. Exponential utility
with different levels of risk tolerance, with λ = ∞ corresponding to the risk-neutral (linear
utility) value. Real option values in bold are the maximum values, for given λ. p0 = $1 million,
w0 = $1 million, T ′ = 10, Δt = 0.25, T = T ′ −Δt, r = 5%, μ1 = −10%, μ2 = 10%, σ1 = 50%
and σ2 = 20%.

UK and US housing markets, but that the US market will recover one or two years before

the UK market. For risk-averse investors the maximum value arises when the length of the

boom and bust periods are approximately the same. However, a risk-neutral investor would

place the greatest value on a property location where the recession period lasts longer (n = 6

in our example).

5.2 Property Price Mean-Reversion

We now investigate how price mean-reversion influences real option values by considering a

standard invest option with no cash flows when the market price follows the OU process (4).

We set p̄ = p0 for simplicity and employ the NR parameterization (5), allowing κ to vary

between 0 and 0.1. Note that κ = 0.1 implies the fastest characteristic time to mean revert

of 10 time-steps, so assuming these are quarterly this represents 2.5 years. Lower values for

κ have slower mean-reversion, e.g. κ = 0.02 corresponds to a charachteristic time to mean

revert of φ = 0.02−1/4 = 12.5 years if time-steps are quarterly. The other parameters are

fixed, as stated in the legend to Figure 8, which displays the real option values for α = 0, 1
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as a function of κ.
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Figure 8: Comparison of option values under HARA utilities with respect to mean-reversion rate
κ. w0 = $1m, r = 5%, k = 1 and λ = 0.4 T ′ = 10, Δt = 1/4, K = p0 = $1m, T = T ′−Δt, σ = 40%.
Characteristic time to mean-revert φ = Δt/κ in years, e.g. with Δt = 1/4 then κ = 0.02 → φ =
12.5yrs, κ = 0.1 → φ = 2.5yrs.

Under all of the utilities considered, the invest-at-market-price option values increase

approximately linearly as the speed of mean-reversion speed increases. Recall that these

option values increase with λ and μ but decrease with volatility and that increasing κ has the

effect of decreasing the volatility of the terminal wealth distribution. In contrast, the fixed-

strike real option values increase with volatility, and therefore they decrease as κ increases.

We also find that, for fixed κ, the invest-at-market-price option value increases with λ and

μ, as usual, but also it may now increases with σ due to the positive effect of σ in the local

drift (5d). However, this local drift effect is only evident for values of κ below a certain

bound, which will depend on σ and on the utility function, λ and other parameters. For

the parameter choice of Figure 8 the invest-at-market-price option values have their usual

negative sensitivity to σ once κ exceeds approximately 2, where the characteristic time to

mean revert is 1/8th of a year or less. Detailed results are not reported for lack of space, but

are available from the authors on request.

Now consider an example in which different investors compare their valuation of two

property investment opportunities, A and B. The investors have different utility functions and

risk aversion but coincide on their views about the mean-reverting price processes governing

each of the properties. Because the properties are in different locations, property A and B have
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different κ and σ. Again assume quarterly time-steps in the tree suppose that property A has

a relatively rapid mean-reversion in its price (κ = 1/10, φ = 2.5 years) with a low volatility

(σ = 20%) and property B has a relatively slow mean-reversion in its price (κ = 1/40, φ = 10

years) with a higher volatility (σ = 40%).

λ 0.4 0.8 ∞
A B A B A B

Exponential 30,421 12,952 52,732 43,947

98,077 797,486
Hyperbolic 33,526 17,563 55,230 58,909

Power 33,045 16,651 56,365 68,051
Logarithmic 19,890 21,260 56,986 73,131

Table 4: A comparison of two invest option values for properties A and B, where κ = 1/10 and
σ = 20% for property A whereas κ = 1/40 and σ = 40% for property B. We compare λ = 0.4 or
0.8 and all other parameter values are the same as in Figure 8. For each utility we highlight the
preferred property.

Table 4 reports the values of the options to invest in each property for each investor,

with the greater value of the two in bold. This shows that different investors would rank the

two properties differently. A risk-neutral investor, or an investor with a logarithmic utility

would always prefer property B, as would an investor with a relatively high risk tolerance

(λ = 0.8) and a hyperbolic or a power utility.19 All other investors would prefer property

A. We conclude that the assumption made about the form of the utility function, as well

as the level of risk tolerance for the decision maker, can have material consequences in the

decision-making process.

5.3 Positive Cash Flows: Buy-to-Let Options

We now consider real options on properties that yield an income to the owner in the form

of a buy-to-let residential property or office block, or a property such as a car park where

fees accrue to its owner for its usage. Short-horizon decision trees for the invest and divest

options on such a property are depicted in Figures 9 and 10. Rents, denoted xs(t) in the

trees, are captured using a positive dividend yield defined by (6) that may vary over time.

Even a constant dividend yield would capture rents that increase/decrease in line with the

market price. Rents are not re-invested in this property or in another property with the same

19Indeed, the risk-neutral investor places an extremely high value of $797,486 on property B because he
ignores the high uncertainty in the price of property B, and thinks only of the local drift which, with a high
volatility but slow mean-reversion, could easily result in a substantial fall in the asset price followed by a rise
before the investment horizon.
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risk-return characteristics; otherwise we could employ the cum-dividend price approach that

has previously been considered. Instead, cash flows are assumed to earn the risk-free rate, as

to suppose they are invested in another risky project would introduce an additional source of

uncertainty which is beyond the scope of this paper.

Buy Sell

������������Utility
Property

σ 40% 25% 30% 20%
μ 15% 10% 15% 10%
δ 10% 10% 20% 10%

Exponential 289 316 6,775 6,052
Hyperbolic 348 339 6,610 6,103

Power 340 336 7,283 6,296
Logarithmic 358 345 4,286 5,330

Table 5: Columns 2 and 3 compare the values of 2 real options, each to purchase a buy-to-let
property based on the decision tree shown in Figure 9. Columns 4 and 5 compare the values of
2 real options, each to sell a buy-to-let property, based on the decision tree in Figure 10. For the
decision maker, in each case λ = 0.4, r = 5%, w0 = $1 million and for each property p0 = $1 million.
The decision maker’s beliefs about μ, σ and δ depend on the property’s location. For each utility
we highlight in bold the preferred location for buying (and selling) the property.

Each time a cash flow is paid the market price jumps down from p+t to p−t = p+t − xt.

Between payments the decision maker expects the discounted market price to grow at rate

μ − r, and based on the discretisation (2) we have p+t+1 = up−t or p+t+1 = dp−t with equal

probability. The terminal nodes of the tree are associated with the increment in wealth

w−w0 where the final wealth w is given (8) for the option to invest in Figure 9, and by (10)

for the option to divest in Figure 10, now setting CF= x.

We now apply the decision trees Figure 9 and Figure 10 to compare the values of the

options to buy (or to sell) two buy-to-let properties in different locations: e.g. property A

represents a typical office development in the UK and property B represents a similar, typical

office development in the US. Both properties have current market value p0 = 1, the initial

wealth of the investor is w0 = 1 and the risk-free rate r = 5%. In each case rents are paid

every six months, and are set at a constant percentage δ of the market price at the time the

rent is paid. The investor has different views about the future market price and rents on each

property, as specified in Table 5. The preferred property of the two to buy (or sell) has a

value marked in bold in the table.

The invest option results, displayed in columns 2 and 3 of Table 5 demonstrate that a

decision maker with exponential (CARA) utility would prefer the option to buy the second
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Figure 9: Decision tree depicting the option to invest in a property that pays rents, xs(t). T ′ =
3, T = 2, k = 1. Terminal nodes labelled with P&L (w − w0), given by (8) following decision to
invest (I) and 0 otherwise, with CF = x.
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property, whilst a decision maker with any of the other HARA utilities would prefer the option

to buy the first property. Similarly, considering columns 4 and 5, which state the divest real

option values of two other properties, both currently owned by the decision maker, we see

that all but the logarithmic utility would favour selling the first property.

Figure 10: Decision tree depicting the option to sell a property that pays rents, xs(t). T ′ = 3, T =
2, k = 1. Terminal nodes labelled with P&L (w − w0), given by (10) with CF = x if the owner
remains invested (R), or if the owner sells the property (S) by the difference between the selling
price and initial price.

5.4 Negative Cash Flows: Buy-to-Develop Options

Setting a negative dividend yield is a straightforward way to capture cash that is paid into

the land or property to cover development costs. But there are other important differences

between the buy-to-develop and buy-to-rent option above. In the buy-to-develop case (a)

there are no cash flows until the land or property is purchased; (b) these cash flows are
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included in the market price, so the market price following an investment decision is cum-

dividend and prior to investment the market price evolves as in the zero cash flow case; and (c)

the investment horizon T ′ is path dependent because it depends on the time of the investment

(e.g. it takes 2 years to develop the property after purchasing the land). In contrast, for the

buy-to-rent case above we have assumed (a) the property earns cash flows for whomsoever

is the current owner; (b) the market price jumps down from p+t to p−t at the time the rent

is paid; and (c) the investment horizon is fixed at the time-length of the buying or selling

opportunity (e.g. the property is expected to be on the market for 6 months).

A simple decision tree for the buy-to-develop option is depicted in Figure 11, in which

the development cost is ys(t) > 0 and p̃t is the (cum-dividend) market price. The option

maturity T is 2 periods, and so is the development time, so T ′ varies from 2 to 4 periods

depending on the time of investment. To keep the tree simple we suppose that development

costs are paid only once, after 1 period, to allow for planning time. For example, consider

the node labelled Du that arises if the investor does not purchase the land or property at

t = 0 and subsequently the market price moves up at t = 1. A decision to invest at this time

leads to four possible P&L’s. For instance, following the dotted red lines, if the price moves

up again at t = 2 the development cost at this time is yuu, based on the market price of

uup0. But if the price subsequently moves down at t = 3, the terminal value of the property

is p̃1,uud = d(uup0 + yuu) and the costs are the sum of the price paid for the land and the

development cost, i.e. up0 + yuu.

A B

������������Utility
Property

σ 25% 15%
μ 10% 35%
δ 20% 40%

Exponential 289 182
Hyperbolic 299 326

Power 315 350
Logarithmic 41 0

Table 6: Value comparison of real options to buy two different properties for development based
on decision tree shown in Figure 11. Here λ = 0.4, r = 5% and w0 = $1 million. Each property
has p0 = $1 million but the decision maker’s views on μ, σ and development costs δ differ for each
property as shown in the table. The preferred option is indicated by the value in bold.

Table 6 displays some numerical results for the decision tree in Figure 11, reporting

the value of two options to buy-to-develop land, each with initial market price $1 million

and r = 5%, but the options have different μ, σ and development costs δ. For each option
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Figure 11: Decision tree depicting the option to invest in land for development. If the land is
acquired (I) the development takes 2 periods and development costs occur only after the first period.
Terminal nodes are associated with the P&L, w − w0 resulting from the decision.
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we suppose the development takes one year in total with the costs paid six months after

purchase. The investors all have initial wealth $10 million and λ = 0.4. In general, a higher

development cost for given μ and σ decreases the buy-to-develop option value, and the investor

becomes more likely to defer investment until the market price falls. But the option value

also increases with μ and decreases with σ. We find that option A is preferred by an investor

with an exponential or logarithmic utility whereas option B is preferred by an investor with a

hyperbolic or a power utility. Hence, different investors that have identical wealth, share the

same initial risk tolerance, and hold the same views about development costs and the evolution

of market prices could still rank the values of two land-development options differently, just

because their risk tolerance has different sensitivity to changes in wealth.

6 Summary and Conclusion

This paper introduces a general decision-tree framework for valuing real options that is flexible

enough to encompass most real-world applications. In addition to the fixed-strike, complete

markets assumption that is most commonly employed in the literature our approach encom-

passes real options to invest or divest at the market price of an asset in a market that need

not be complete. We do not focus on analytic solutions and are therefore free to employ

any representative utility function and any asset price process that we choose. We consider

utilities in the HARA class and three possible asset price scenarios: the standard GBM,

regime-switching GBM and a mean-reverting price process.

We provide many numerical illustrations to answer several important questions relating

to real options that have not previously been addressed. Our main findings are as follows:

(1) The assumption about the investment cost – whether it is fixed (in time 0 terms) or

stochastic (and perfectly correlated with the market price) – has a significant influence on the

real option value. The fixed-strike assumption can significantly over-estimate the value of a

real option when the more-appropriate assumption is that the investment cost is at market

price, or has both a fixed cost and market price component; (2) Under the GBM assumption

the sensitivity of a fixed-strike real option to the volatility of the underlying asset price may

be positive, whereas the invest-at-market-price real option always has a negative sensitivity

to the asset-price volatility; (3) The value of the investment or divestment option increases

with the frequency of decision opportunities. Therefore it is important to account for the

flexibility of the decision-making process when valuing real options; (4) The decision maker’s

ranking of different real options depends on the form of the utility function applied, as well as

his initial level of risk tolerance. Using HARA utilities, where the relative risk tolerance can

change with wealth, gives a more accurate valuation of real options in incomplete markets than
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using an exponential utility – despite its tractability – because it has the unrealistic CARA

property; (5) The price of the investment relative to the decision maker’s wealth matters: the

smaller (greater) the risk tolerance of the investor, the higher he ranks the option to invest

in a relatively low-priced (high-priced) asset, given that the asset-price dynamics follow the

same GBM process. Perhaps most importantly, we compare the standard RNV real option

price with the values that would be ascribed to the option by risk-averse investors under the

incomplete market assumption. Thus, we provide straightforward comparison between the

real option price that is obtained using standard, but unrealistic, assumptions with the value

that would be found using a more complete and general approach.

Our framework is sufficiently flexible to handle a variety of real options on real estate.

Numerical results for different types of property investment and divestment decisions have

been used to illustrate how our methodology can be implemented using mean-reverting or

‘boom-bust’ property price scenarios. We have also shown how the ranking of various real

estate options, including buying or selling a property that pays rents and investing in a fixed-

term land development, depends on the investor’s initial risk tolerance and its sensitivity to

wealth. This research has potential applications to many other types of real options and

management decisions, not just to real estate problems. Also, the methodology could be

further developed in several ways: to utility functions outside the HARA class, to more

complex views on market prices than lognormal, mean-reverting or boom-bust scenarios, and

to include stochastic financing costs and/or cash flows.

Copyright c© 2012 Alexander and Chen 38



ICMA Centre Discussion Papers in Finance DP2012-04

References

M. Benaroch and R. J. Kauffman. Justifying electronic banking network expansion using real
options analysis. MIS Quarterly, 24:197–225, 2000.

P. F. Boer. Valuation of technology using “real options”. Research Technology Management,
43:26–30, 2000.

E. H. Bowman and G. T. Moskowitz. Real options analysis and strategic decision making.
Organization Science, 12:772–777, 2001.

L. E. Brandão and J. S. Dyer. Decision analysis and real options: A discrete time approach
to real option valuation. Annals of Operations Research, 135(1):21–39, 2005. doi: 10.1007/
s10479-005-6233-9.

L. E. Brandão, J. S. Dyer, and W. J. Hahn. Using binomial decision trees to solve real-option
valuation problems. Decision Analysis, 2:69–88, 2005.

L. E. Brandão, J. S. Dyer, and W. J. Hahn. Response to comments on brandão et al. (2005).
Decision Analysis, 2:103–109, 2008.

D. R. Capozza and G. A. Sick. Valuing long-term leases: the option to redevelop. Journal of
Real Estate Economics and Finance, 4:209–233, 1991.

D. M. Chance. Convergence of the Binomial to the Black-Scholes Model. E. J. Ourso College
of Business, Lousiana State University, 2163 Patrick F. Taylor Hall, Baton Rouge, LA
70803, US, 2008.

T. Copeland and V. Antikarov. Real Options: A Practitioner’s Guide. Texere, New York,
2001.

T. Copeland, T. Koller, and J. Murrin. Valuation: Measuring and Managing the Value of
Companies. New York: John Wiley & Sons, 1990.

J. C. Cox, S. A. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of
Financial Economics, 7(3):229–263, Sept. 1979.

M. H. A. Davis, Y. Kabanov, R. Lipster, and J. Stoyanov. Optimal hedging with basis risk.
Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pages 169–187,
2006.

J. Evans, V. Henderson, and D. G. Hobson. Optimal timing for an indivisible asset sale.
Mathematical Finance, 18(4):545–567, 2008.

M. R. Grasselli. Getting real with real options: A utility-based approach for finite-time
investment in incomplete markets. Journal of Business Finance and Accounting, 38(5-6):
740–764, 2011.

Copyright c© 2012 Alexander and Chen 39



ICMA Centre Discussion Papers in Finance DP2012-04

S. R. Grenadier. The strategic exercise of options: development cascades and overbuilding in
real estate markets. The Journal of Finance, 51:1653–1679, 1996.

J. M. Harrison and D. M. Kreps. Martingales and arbitrage in multiperiod securities markets.
Journal of Economic Theory, 20:381–408, 1981.

V. Henderson. Valuation of claims on nontraded assets using utility maximization.
Mathematical Finance, 12(4):351–373, 2002.

V. Henderson. Valuing the option to invest in an incomplete market. Mathematics and
Financial Economics, 1(2):103–128, 2007.

V. Henderson and D. G. Hobson. Real options with constant relative risk aversion. Journal
of Economic Dynamics and Control, 27(2):329–355, 2002.

S. Howell, A. Stark, D. Newton, D. Paxson, M. Cavus, J. Pereira, and K. Patel. Real
Options: Evaluating Corporate Investment Opportunities in a Dynamic World. Financial
Times, Prentice Hall, 2001.

R. Jarrow and A. Rudd. Approximate option valuation for arbitrary stochastic processes.
Journal of Financial Economics, 10:347–369, 1982.

E. Kasanen and L. Trigeorgis. Real Options in Capital Investment: Models, Strategies,
and Applications, chapter Merging Finance Theory and Decision Analysis, pages 47–68.
Westport, Conn,: Praeger, 1995.

R. Keeney and H. Reiffa. Decisions with Multiple Objectives. Cambridge University Press,
New York, 1993. Original edition published by Wiley, New York, 1976.

B. Kogut. Joint ventures and the option to expand and acquire. Management Science, 37:
19–33, 1991.

S. P. Mason and R. C. Merton. Recent Advances in Corporate Finance, chapter The Role of
Contingent Claims Analysis in Corporate Finance, pages 7–54. Irwin, Boston, MA, 1985.

R. McDonald and D. Siegel. The value of waiting to invest. Quarterly Journal of Economics,
101(4):707–727, 1986.

R. C. Merton. Lifetime portfolio selection under uncertainty: the continuous time case.
Review of Economics and Statistics, 51:247–257, 1969.

R. C. Merton. Optimum consumption and portfolio rules in a continuous-time model. Journal
of Economic Theory, 3:373–413, 1971.

J. Miao and N. Wang. Investment, consumption, and hedging under incomplete markets.
Journal of Financial Economics, 86(3):608–642, 2007.

J. Mossin. Optimal multiperiod portfolio policies. Journal of Business, 41:215–229, 1968.

Copyright c© 2012 Alexander and Chen 40



ICMA Centre Discussion Papers in Finance DP2012-04

S. C. Myers. Determinantes of corporate borrowing. Journal of Financial Economics, 5(2):
147–175, 1977.

D. B. Nelson and K. Ramaswamy. Simple binomial processes as diffusion approximations in
financial models. The Review of Financial Studies, 3:393–430, 1990.

S. Panayi and L. Trigeorgis. Multi-stage real options: the cases of information technology
infrastructure and international bank expansion. The Quarterly Review of Economics and
Finance, 38:675–682, 1998.

K. Patel, D. Paxson, and T. F. Sing. A review of the practical uses of real property options.
RICS Research Paper Series, 5:1, 2005.

L. Quigg. Empirical testing of real option-pricing models. The Journal of Finance, 48:621–640,
1993.

M. B. Shackleton and R. Wojakowski. Finite maturity caps and floors on continuous flows.
Journal of Economic Dynamics and Control, 31(12):3843–3859, 2007.

H. T. J. Smit. The valuation of offshore concessions in the netherlands. Financial
Management, 26(2):5–17, 1996.

H. T. J. Smit and L. A. Ankum. A real option and game-theoretic approach to corporate
investment strategy under competition. Financial Management, 22(3):241–250, 1993.

J. E. Smith. Alternative approaches for solving real-options problems. Deicison Analysis, 2
(2):89–102, 2005.

J. E. Smith and K. F. McCardle. Valuing oil properties: Integrating option pricing and
decision analysis approaches. Operations Research, 46(2):198–217, 1998.

J. E. Smith and R. F. Nau. Valuing risky projects - option pricing theory and decision-analysis.
Management Science, 41(5):795–816, 1995.

A. J. Triantis and J. E. Hodder. Valuing flexibility as a complex option. The Journal of
Finance, 45:549–565, 1990.

L. Trigeorgis. The nature of option interactions and the valuation of investments with multiple
real options. The Journal of Financial and Quantitative Analysis, 28:1–20, 1993.

L. Trigeorgis. Real Options: Managerial Flexibility and Strategy in Resource Allocation. The
MIT Press, Cambridge, MA., 1996.

L. Trigeorgis and P. Mason. Valuing managerial flexibility. Midland Corporate Finance
Journal, 5:14–21, 1987.

K. T. Yeo and F. Qiu. The value of management flexibility - a real option approach to
investment evaluation. International Journal of Project Management, 21:243–250, 2002.

Copyright c© 2012 Alexander and Chen 41


	Introduction
	Relevance to the Literature
	The Model
	Market Prices and Cash Flows
	Costs and Benefits of Investment and Divestment
	Optimal Decisions and Real Option Value
	Risk Preferences

	Numerical Results
	Real Options at Market Price: Incomplete Market, Exponential Utility
	Investment Costs and the Risk-Neutral Valuation Approach
	Effect of Decision Frequency on Real Option Value
	The HARA Utility Class
	Relative Cost of the Asset
	Sensitivity to  and 

	Applications to Real Estate
	Property Price Recessions and Booms
	Property Price Mean-Reversion
	Positive Cash Flows: Buy-to-Let Options
	Negative Cash Flows: Buy-to-Develop Options

	Summary and Conclusion

